RIZICULTURA: UMA REVISÃO BIBLIOGRÁFICA SOBRE O MANEJO DE FERTILIZANTES NITROGENADOS UTILIZANDO PROCESSAMENTO DIGITAL DE IMAGENS

Palavras-chave: Rizicultura. Processamento Digital de Imagens. Níveis de Nitrogênio. Fertilizante Nitrogenado.

Resumo

Os fertilizantes nitrogenados desempenham um papel de extrema importância na rizicultura. Seu manejo incorreto causam problemas ambientais e reduzem a rentabilidade das lavouras. O Processamento Digital de Imagens produz soluções inovadoras na identificação dos níveis de nitrogênio e sugestão no manejo dos fertilizantes. O objetivo deste artigo foi realizar uma revisão do estado da arte da literatura, visando destacar as principais contribuições do Processamento Digital de Imagens, para identificação dos níveis de nitrogênio na rizicultura. Para isso, foi realizada uma revisão sistemática exploratória da literatura. Foram selecionados e apresentados sete artigos referentes aos últimos dez anos e caracterizados como o estado da arte. Como resultado, ficou evidente que a aplicação de Processamento Digital de Imagens na rizicultura poderá melhorar a acurácia dos métodos e proporcionar melhorias na produtividade, rentabilidade das safras e agilidade na identificação e solução de problemas.

Biografia do Autor

Rodrigo Nunes Maciel, Universidade Federal de Santa Catarina

Mestrando em Tecnologias da Informação e Comunicação, pela Universidade Federal de Santa Catarina (UFSC). 

Roderval Marcelino, UFSC

Doutor e professor da Universidade de Santa Catarina.

Rogério Hermínio da Silva, Universidade Federal de Santa Catarina

Mestrando em Tecnologias da Informação e Comunicação, pela Universidade Federal de Santa Catarina (UFSC). 

Vilson Gruber, UFSC

Doutor e professor da Universidade Federal de Santa Catarina.

Referências

ADHIKARI, C. et al. On-farm soil N supply and N nutrition in the rice–wheat system of Nepal and Bangladesh. Field Crops Research, v. 64, n. 3, p. 273–286, dec 1999. ISSN 03784290. https://linkinghub.elsevier.com/retrieve/pii/S0378429099000635.

BALAFOUTIS, A. et al. Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics. Sustainability, v. 9, n. 8, p. 1339, jul 2017. ISSN 2071-1050. http://www.mdpi.com/2071-1050/9/8/1339.

CANCELLIER, E.l. et al. Eficiência agronômica no uso de nitrogênio mineral por cultivares de arroz de terras altas. Revista Brasileira de Ciências Agrárias - Brazilian Journal Of Agricultural Sciences, [s.l.], v. 6, n. 4, p.650-656, 31 dez. 2011. Revista Brasileira de Ciencias Agrarias. http://dx.doi.org/10.5039/agraria.v6i4a1420.

CEN, Haiyan et al. Dynamic monitoring of biomass of rice under different nitrogen treatments using a lightweight UAV with dual image-frame snapshot cameras. Plant Methods, [s.l.], v. 15, n. 1, p.1-16, 27 mar. 2019. Springer Nature. http://dx.doi.org/10.1186/s13007-019-0418-8.

CHATAIGNER, J. Activités de recherche sur le riz en climat méditerranéen. Cahiers Options Méditerranéennes, v. 24, n. 2, 1997.

CONAB. Acompanhamento da safra Brasileira: Graõs, safra 2018/2019, oitavo levantamento. 2019. 1–60 p. CONANT, R. T.; BERDANIER, A. B.; GRACE, P. R. Patterns and trends in nitrogen use and nitrogen recovery efficiency in world agriculture. Global Biogeochemical Cycles, v. 27, n. 2, p. 558–566, jun 2013. ISSN 08866236. http://doi.wiley.com/10.1002/gbc.20053.

FAGERIA, N. K.; MOREIRA, A.; COELHO, A. M.. YIELD AND YIELD COMPONENTS OF UPLAND RICE AS INFLUENCED BY NITROGEN SOURCES. Journal Of Plant Nutrition, [s.l.], v. 34, n. 3, p.361-370, 20 jan. 2011. Informa UK Limited. http://dx.doi.org/10.1080/01904167.2011.536878.

GONZALEZ, R. C., R. E. WOODS. Digital Image Processing. Upper Saddle River, NJ: Prentice Hall, 2001. 954p.

GRUBER, N.; GALLOWAY, J. N. An Earth-system perspective of the global nitrogen cycle. Nature, v. 451, n. 7176, p. 293–296, jan 2008. ISSN 0028-0836. http://www.nature.com/articles/nature06592.

HUANG, J. et al. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. Journal of Cleaner Production, v. 159, p. 171–179, aug 2017. ISSN 09596526. https://linkinghub.elsevier.com/retrieve/pii/S0959652617309265.

LEE, Jae-Neung; KWAK, Keun-Chang. A trends analysis of image processing in unmanned aerial vehicle. International Journal of Computer, Information Science and Engineering, v. 8, n. 2, p. 2–5, 2014.

LEE, K.-J.; LEE, B.-W. Estimation of rice growth and nitrogen nutrition status using color digital camera image analysis. European Journal of Agronomy, v. 48, p. 57–65, jul 2013. ISSN 11610301. https://linkinghub.elsevier.com/retrieve/pii/S1161030113000294.

LI, Y. et al. Estimating the nitrogen status of crops using a digital camera. Field Crops Research, v. 118, n. 3, p. 221–227, sep 2010. ISSN 03784290. https://linkinghub.elsevier.com/retrieve/pii/S0378429010001358.

LIU, X. et al. Effect of N Fertilization Pattern on Rice Yield, N Use Efficiency and Fertilizer–N Fate in the Yangtze River Basin, China. PLOS ONE, v. 11, n. 11, p. e0166002, nov 2016. ISSN 1932-6203. https://dx.plos.org/10.1371/journal.pone.0166002.

NASCENTE, A. S. et al. PRODUTIVIDADE DO ARROZ DE TERRAS ALTAS EM FUNÇÃO DO MANEJO DO SOLO E DA ÉPOCA DE APLICAÇÃO DE NITROGÊNIO. Pesquisa Agropecuária Tropical, v. 41, n. 1, jan 2011. ISSN 1983-4063. http://www.revistas.ufg.br/index.php/pat/article/view/6509.

PRASERTSAK, A.; FUKAI, S. Nitrogen availability and water stress interaction on rice growth and yield. Field Crops Research, v. 52, n. 3, p. 249–260, jun 1997. ISSN 03784290. https://linkinghub.elsevier.com/retrieve/pii/S0378429097000166.

ROCHETTE, P. et al. Ammonia Volatilization and Nitrogen Retention: How Deep to Incorporate Urea? Journal of Environment Quality, v. 42, n. 6, p. 1635, 2013. ISSN 0047-2425. https://dl.sciencesocieties.org/publications/jeq/abstracts/42/6/1635.

RORIE, R. L. et al. Association of “Greenness” in Corn with Yield and Leaf Nitrogen Concentration. Agronomy Journal, v. 103, n. 2, p. 529, 2011. ISSN 1435-0645. https://www.agronomy.org/publications/aj/abstracts/103/2/529.

SABERIOON, M.m. et al. Assessment of rice leaf chlorophyll content using visible bands at different growth stages at both the leaf and canopy scale. International Journal Of Applied Earth Observation And Geoinformation, [s.l.], v. 32, p.35-45, out. 2014. Elsevier BV. http://dx.doi.org/10.1016/j.jag.2014.03.018.

SAVANT, N. K.; STANGEL, P. J. Deep placement of urea supergranules in transplanted rice: Principles and practices. Fertilizer Research, v. 25, n. 1, p. 1–83, oct 1990. ISSN 0167-1731. http://link.springer.com/10.1007/BF01063765.

SUN, Jia et al. Estimating Rice Leaf Nitrogen Concentration: Influence of Regression Algorithms Based on Passive and Active Leaf Reflectance. Remote Sensing, [s.l.], v. 9, n. 9, p.951-965, 13 set. 2017. MDPI AG. http://dx.doi.org/10.3390/rs9090951.

SUN, Yuanyuan et al. Identification of Nitrogen, Phosphorus, and Potassium Deficiencies Based on Temporal Dynamics of Leaf Morphology and Color. Sustainability, [s.l.], v. 10, n. 3, p.762-775, 10 mar. 2018. MDPI AG. http://dx.doi.org/10.3390/su10030762.

STAVRAKOUDIS, D. et al. Estimating Rice Agronomic Traits Using Drone-Collected Multispectral Imagery. Remote Sensing, v. 11, n. 5, p. 545, mar 2019. ISSN 2072-4292. https://www.mdpi.com/2072-4292/11/5/545.

VEÇOZZI, T. A. et al. Soil solution and plant nitrogen on irrigated rice under controlled release nitrogen fertilizers. Ciência Rural, v. 48, n. 1, dec 2017. ISSN 1678-4596. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782018000100251&lng=en&tlng=en.

WANG, Y. et al. Estimating nitrogen status of rice using the image segmentation of G-R thresholding method. Field Crops Research, v. 149, p. 33–39, aug 2013. ISSN 03784290. https://linkinghub.elsevier.com/retrieve/pii/S037842901300124X.

WUTHI-ARPORN, Jirawut. Increasing Rice Production: Solution to the Global Food Crisis. [S.d.].

YUAN, Yuan et al. Diagnosis of nitrogen nutrition of rice based on image processing of visible light. 2016 Ieee International Conference On Functional-structural Plant Growth Modeling, Simulation, Visualization And Applications (fspma), [s.l.], v. 1, n. 1, p.228-232, nov. 2016. IEEE. http://dx.doi.org/10.1109/fspma.2016.7818311.

ZHENG, H. et al. Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice. Frontiers in Plant Science, v. 9, n. 1, p. 1–9, jul 2018. ISSN 1664-462X. https://www.frontiersin.org/article/10.3389/fpls.2018.00936/full.

ZHU, Jinxia et al. Quantifying Nitrogen Status of Rice Using Low Altitude UAV-Mounted System and Object-Oriented Segmentation Methodology. Volume 3: ASME/IEEE 2009 International Conference on Mechatronic and Embedded Systems and Applications; 20th Reliability, Stress Analysis, and Failure Prevention Conference, [s.l.], v. 1, p.603-609, 2009. ASME. http://dx.doi.org/10.1115/detc2009-87107.

Publicado
2020-06-04