
Abstract: In a wide range of industrial applications, it 
is desirable that processes result in fault-free products. 
The manufacturing process must have limited variability 
around the target value for the product. In a process 
where a non-random factor leads to a change in the 
process under control, the out-of-control process is 
said to be the result of a process out of control of a 
defective product. Random agents are also caused by 
the accumulation of a number of small and unavoidable 
deviations that in the statistical quality control process, 
the random factor-affected process is usually considered 
as the process under control. The control chart discussed 
in this article is a cumulative control chart that is 
plotted by summing the pre-self statistical samples 
and comparing the result with the permissible control 
boundary detects how the process status is used to 
identify cost variables.  Waiting time is the unit of time 
and cost of identifying the cause deviation as well as the 
decision variables that include sample size, sampling 
interval, and cumulative control chart decision distance, 
and reference value, economic statistical design. In 
this paper, the econometric design of control charts is 
performed under the cost model of Lorenzen and Vance.
This paper deals with the economic performance of 
the cumulative control chart and compares it with the 
Schuharti control chart. The economic performance 
of the cumulative assembly control charts is more 
appropriate. It is necessary to explain the distribution 
mechanism of the exponential distribution process 
failure and all calculations are programmed with R 
software. 
Keywords: Economic statistical design. Cumulative 
control chart. Exponential shock model.

Resumo: Em uma ampla gama de aplicações industriais, 
é desejável que os processos resultem em produtos sem 
falhas. O processo de fabricação deve ter variabilidade 
limitada em torno do valor alvo para o produto. Em um 
processo em que um fator não aleatório leva a uma 
mudança no processo sob controle, diz-se que o processo 
fora de controle é o resultado de um processo fora de 
controle de um produto defeituoso. Os agentes aleatórios 
também são causados pelo acúmulo de vários desvios 
pequenos e inevitáveis que, no processo estatístico de 
controle de qualidade, o processo aleatório afetado por 
fatores é geralmente considerado como o processo sob 
controle. O gráfico de controle discutido neste artigo é 
um gráfico de controle cumulativo que é plotado pela 
soma das amostras pré-estatísticas e comparando o 
resultado com o limite de controle permitido, detecta 
como o status do processo é usado para identificar 
variáveis de custo. O tempo de espera é a unidade de 
tempo e custo para identificar o desvio da causa, bem 
como as variáveis de decisão que incluem tamanho 
da amostra, intervalo de amostragem e distância da 
decisão do gráfico de controle cumulativo e valor de 
referência, design estatístico econômico. Neste artigo, o 
design econométrico de gráficos de controle é realizado 
no modo custo l de Lorenzen e Vance. Este artigo trata 
do desempenho econômico da tabela de controle 
cumulativa e a compara com a tabela de controle de 
Schuharti. O desempenho econômico das cartas de 
controle cumulativas de montagem é mais apropriado. 
É necessário explicar o mecanismo de distribuição da 
falha do processo de distribuição exponencial e todos os 
cálculos são programados com o software R.
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Introduction
Control	charts	are	quality	improvement	tools	to	create	and	maintain	statistical	control	of	

manufacturing	processes.	Since	Schwartz	(1931)	first	introduced	the	control	chart,	various	types	of	
these	tools	have	been	developed.	At	the	beginning	of	development,	control	charts	were	designed	
with	only	 statistical	 criteria	 in	mind,	while	 the	basic	 requirement	 for	 statistical	 control	was	 the	
economic	movement	process.	The	basic	 idea	of	 		economic	design	of	control	charts	was	first	put	
forward	incompletely	by	Grishik	and	Robibe	(1952)	and	completed	by	Duncan	(1956)	(Shrivastavaet	
al.,	2016).	The	basis	of	statistical	control	charts	for	controlling	important	changes	in	the	production	
process	is	Schwartz	control	charts,	which	were	first	used	in	Bell	Telephone	Laboratories.	This	chart	
is	intended	as	the	emergence	of	statistical	process	control	(SPC).	This	was	one	of	the	first	methods	
of	quality	assurance	introduced	in	modern	industry	(Ridwan	et	al.,	2017).	Statistical	and	economic	
designs	each	have	their	own	strengths	and	weaknesses.	Statistical	schemes	generate	graphs	that	
have	high	power	and	low	error	rate	to	identify	a	particular	change	in	processes;	on	the	other	hand	
these	schemes	impose	more	cost	than	economic	schemes	(Haq	et	al.,	2014).		On	the	other	hand,	
economic	plans	only	consider	cost	and	ignore	the	statistical	properties	of	control	charts.	For	this	
reason,	it	was	felt	necessary	to	redesign	control	charts	to	take	into	account	the	economic	aspects	
in	addition	to	statistical	features.	In	this	regard,	Saniga	(1989)	introduced	the	economic	statistical	
design	of	control	charts	(Kasarapu	and	Vommi,	2013).

One	of	the	most	powerful	tools	for	stabilizing	and	improving	processes	is	statistical	process	
control	(SPC),	 in	which	the	achievements	of	the	pre-construction	steps	and	improvement	in	the	
specific	 domains	 specified	 at	 the	time	of	 design	 are	 performed	by	 statistical	 techniques	 called	
control	charts.	The	purpose	of	control	charts	is	to	address	a	concept	called	sustainability	(process-
controlled	 statistics)	 that	 performs	 some	 kind	 of	 scientific	 monitoring	 and	 control	 over	 the	
variability	in	process	output	through	process	behavior	monitoring	and	while	the	trend	or	wheels	
are	abnormal,	the	control	charts	give	the	audiences	the	necessary	warning	that	the	process	is	out	
of	control	and	unstable.	In	this	regard,	it	is	worth	noting	that	there	are	various	ways	to	control	and	
optimize	process	and	product	quality	enhancement	are	presented,	 including	methods	statistical	
control,	such	as	control	charts	due	to	the	nature	of	random	variability	in	the	system	under	study	are	
of	special	significance	(Lai	et	al,	2017).

The	inherent	variability	or	disruption	of	any	production	process	is	caused	by	the	accumulation	
of	a	large	set	of	small	and	unavoidable	deviations	known	as	«random	deviations».	A	process	that	
operates	only	in	the	presence	of	random	deviations	is	called	a	statistically	controlled	process.	In	
other	words,	random	deviations	are	an	integral	part	of	the	process.	Another	type	of	variability	that	
is	not	part	of	random	deviations	 is	called	«caused	deviations»	that	usually	originate	from	three	
sources:	incorrect	device	configuration,	user	errors,	and	faulty	raw	materials	(Caballero-Morales,	
2013).	

The	 process	 that	works	 in	 the	 presence	 of	 caused	 deviations	 is	 called	 a	 process	 out	 of	
control.	Most	manufacturing	processes	are	usually	in	a	controlled	state,	which	allows	for	long-term	
production	of	acceptable	products.	However,	at	times,	caused	deviations	can	occur	and	cause	the	
process	to	shift	out	of	control.	In	this	case,	a	large	percentage	of	the	process	output	will	not	conform	
to	the	desired	requirements.	Therefore,	when	the	process	shifts	out	of	control	due	to	deliberate	
deviations,	a	control	diagram	alert	to	detect	this	 is	the	ultimate	goal	of	drawing	this	chart.	This	
will	 prevent	 the	mass	 production	 of	 defective	 products.	 Of	 course,	 the	 technical	 responsibility	
of	identifying	caused	deviation	and	turning	the	process	into	a	controlled	state	that	is	possible	by	
engineering	methods	will	be	the	responsibility	of	the	technical	department	(Seif	et	al.,	2015).

	 The	control	chart	 is	actually	 the	execution	of	a	statistical	hypothesis	 test	over	time.	To	
do	this,	according	to	a	sampling	design,	samples	(random	or	correlated)	are	selected	over	time	
intervals	(uniform	or	non-uniform).	Then	the	desired	statistic	(the	test	statistic	is	calculated)	and	its	
value	is	specified	on	the	chart.	If	this	value	is	within	the	control	range,	the	process	is	controlled	and	
if	it	is	outside	the	process,	it	is	considered	out	of	control	(Shamsuzzaman	et	al.,	2015).	

Designing	 control	 charts	 is	 the	 main	 objective	 is	 to	 determine	 the	 optimal	 regulatory	
parameters,	 namely	 sample	 size,	 sampling	 interval	 and	 control	 limit	 coefficient	 for	 the	process	
under	study	in	four	approaches:	experimental	design,	statistical	design	(SD),	economic	design	(ED)	
and	economic-	statistical-	design	(ESD)	is	performed,	the	empirical	approach	first	presented	by	the	
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designer	of	 the	schwartz	control	chart	 in	1924.	 In	his	approach,	sample	size	4	or	5	and	control	
limite	coefficient	3	and	sampling	interval	h	=	1	(in	hours)	were	used	for	high	volume	production	
processes,	despite	its	simple	experimental	design	and	use.	It	is	easy	to	operate	but	not	economically	
and	statistically	insufficient	(Faraz	and	Saniga,	2013).

 The	statistical	design	of	the	sample	size	and	the	control	coefficient	of	determination	shall	
be	such	that	the	test	capability	to	detect	a	specific	changes	in	the	quality	characteristic	as	well	as	
the	probability	of	first	type	error	being	equal	to	a	certain	value.	For	this	purpose,	statistical	design	
criteria	such	as	type	i	and	type	ii	errors	are	considered.	The	statistical	design	of	control	charts	rarely	
takes	into	account	the	sampling	interval,	and	usually	when	selecting	sampling	intervals,	users	are	
suggested	to	consider	factors	such	as	production	rate,	average	frequency	of	changes	that	lead	out	
of	control.	In	many	cases,	the	use	of	scientific	experience	and	statistical	criteria	has	led	to	general	
guidelines	for	the	design	of	control	charts	(Mahadik,	2013).

	 Statistical	design	provides	high	power	charts	and	low	first-rate	error	rates	to	detect	specific	
changes	in	the	process;	this	type	of	design	fails	to	take	into	account	economic	aspects	and	imposes	
higher	quality	costs	than	economic	design	(Katebi	et	al.,	2016).

	 On	the	other	hand,	economic	design,	which	aims	to	optimize	the	design	parameters	so	
as	to	minimize	the	average	total	cost	per	unit	time	to	execute	this	design,	considers	only	the	cost	
and	neglects	the	statistical	properties	of	the	control	charts.	Economic	design	is	defined	by	defining	
quality	cycles	as	successive	time	periods	that	begin	with	the	system	being	under	control	and	ending	
with	a	deviation	due	to	its	discovery	and	correction	resulting	in	the	system	being	restored.	From	
the	reward-renewal	theorem,	the	average	cost	per	quality	cycle	divided	by	the	average	time	of	that	
cycle	results	in	the	average	cost	per	unit	time	for	that	cycle,	which	will	be	the	objective	function	of	
the	minimization	problem	(Heydari	et	al.,2016).

	 Woodall	 (1986),	as	a	critic	of	 the	economic	designs	of	 the	control	charts,	showed	that	
these	schemes	significantly	increased	the	probability	of	the	first	type	of	control	chart	error	than	
the	statistical	design.	This	increase	in	the	likelihood	of	the	first	type	of	error	can	lead	to	increased	
false	alarms	and	correction	over	process	startup.	Unnecessary	process	adjustments	often	increase	
variability	and	change	in	quality	attributes,	and	over	time	cause	managers	and	industry	owners	to	
lose	confidence	in	control	charts	(Rafiey	et	al.,	2016).

	 In	designing	a	variable	control	chart	we	have	a	quality	attribute	designed	to	monitor	the	
process	behavior	of	this	quality	attribute.	On	the	other	hand,	today,	technological	advancements	
have	complicated	the	production	processes	of	a	product	(product	or	service),	and	the	simultaneous	
control	of	two	or	more	interrelated	and	independent	quality	characteristics	in	the	process	seems	
necessary.	 To	 control	 for	 these	quality	 characteristics,	 considering	 a	 set	 of	 one-variable	 control	
charts	for	each	variable	can	lead	to	very	misleading	results.	The	establishment	of	an	efficient	and	
reliable	multi-control	diagram	will	reduce	the	costs	of	internal	and	external	quality	failure,	despite	
an	increase	in	preventive	costs	(Mahadik,	2013).

	 The	 economic	 design	 of	 control	 charts	 is	 based	 solely	 on	 cost	minimization	 and	 does	
not	interfere	with	statistical	criteria.	In	order	to	overcome	this	problem,	Saniga	(1989)	proposed	
a	 statistical-economic	 design.	 This	 design	 eliminates	 the	 disadvantages	 of	 economic	 design	 by	
taking	into	account	both	statistical	and	economic	aspects.	Economic-	statistical	design	charts	need	
a	 distribution	 for	 the	 process	 failure	mechanism	 to	 determine	 the	 optimal	 design	 parameters	
(Albloushi	et	al.,	2015).

	 Aghabeig	 and	 Moghadam	 (2014)	 investigated	 the	 economical	 design	 of	 the	 X-ray	
development	 under	 a	 generalized	 view	 distribution	 failure	 mechanism	 with	 uniform	 sampling	
intervals.	In	this	paper,	the	economic	statistical	design	of	X	control	charts	under	the	generalized	
view	distribution	fracture	mechanism	with	uneven	sampling	interval	is	discussed.

	 The	structure	of	this	paper	is	that	we	first	introduce	economic-statistical	design	of	cusum	
control	charts	in	section	1	and	then	in	section	2	we	prepare	cost	models	and	also	elaborating	
Shewhart	and	CUSUM	chart	in	section	3	and	4	respectively.		We	compare	the	numerical	results	of	
statistical-economic	design	and	economic	design	in	section	5.	And	finally	in	section	6,	the	conclusion	
is	discussed.
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Cost models
	 We	consider	a	production	process	 that	operates	 indefinitely.	 There	 is	only	one	quality	

attribute	 	that	needs	to	be	monitored,	and	that	quality	attribute	is	a	normal	random	variable	

with	a	target	value	of	 	and	the	variance	is	 .	Note	that	the	variance	 	is	in	fact	known	
and	unknown,	but	we	assume	that	it	can	be	accurately	estimated	from	past	data.		Also	note	that	the	
assumption	of	normality,	which	is	somehow	found	in	most	related	texts	and	sources,	is	practically	
harmless	when	sample	sizes	are	not	too	small	because	sample	averages	are,	however,	approximately	

approximated	by	the	central	limit	theorem	have	normal	distribution.		However,	if	the	 	distribution	
has	obvious	and	significant	deviations	from	the	normal	distribution	and	the	sample	sizes	are	small	
or	unit,	then	the	economic	performance	analysis	of	the	CUSUM	and	Schuharty	charts	should	be	
modified	accordingly	and	beyond	this	scope.	Process	from	statistical	control	mode	(under	control)	

	it	starts	and	is	subject	to	two	free	deviations	(deviation	1	and	deviation	2)	

that	average	the	process	from	  transfer to  or 

.	The	occurrence	of	these	deviations	causes	the	process	to	shift	out	of	control.	It	is	
assumed	that	the	times	of	cause	deviations	1	and	2	are	independent	exponential	random	variables	

with	 averages	 of	  and ,	 respectively.	 Thus,	 the	 expected	 time	 until	 any	

deviation	occurs	is	 	for	which	 .	The	probability	that	a	cause	
deviation	will	occur	at	a	time	interval,	provided	that	the	process	is	controlled	at	the	beginning	of	this	

interval,	is	a	function	of		 	and	is:

												(1)

	 The	probability	that	the	deviation	with	reseaon	 -th	(j	=	1	or	 	=	2)	before	the	other	

deviation	in	the	time	interval	 	occurs	is:

(2)		

	 It	is	assumed	that	after	the	deviation	with	reseaon	 -th,	the	average	process	remains	at	

	until	it	reaches	us	again.	At	each	sampling	time,	a	sample	of	size	 	is	taken,	the	mean	of	
the	sample	calculated	and	a	warning	may	be	issued	depending	on	its	value	and	chart	statistics.	If	
no	warnings	have	been	issued	for	the	chart,	no	action	is	taken	and	subsequent	sampling	begins	

just	after	 	time	unit.	If	an	alert	is	issued,	investigations	begin	and	if	a	deviation	is	detected	the	
process	returns	to	control	state.	It	should	be	noted	that	the	process	can	be	stopped	or	continued	
during	the	search	and	repair.	It	is	assumed	that	the	time	for	sampling	and	study	after	a	false	alarm	is	

less	than	 .	As	a	result,	the	sampling	process	stops	during	study	and	correction	because	sampling	
is	useless	when	the	process	is	found	to	operate	out	of	control.	After	detecting	and	eliminating	a	
real	deviation,	the	operation	process	resumes	its	operation	from	control	state,	and	then	the	next	

sample	is	taken	after	 	time	unit.
	 The	cost	of	sampling	and	inspection	is	c	per	unit	and	the	fixed	cost	for	each	sample	is	b.	The	

cost	of	a	false	alert	is	L.,	and	the	cost	of	restoring	the	process	after	a	alert	is	 .	The	
other	expected	costs	per	unit	time	of	operation	are	M	when	the	process	operates	out	of	control.

	 Due	to	the	weaknesses	of	statistical	designs	and	economic	designs,	another	method	was	
proposed	in	the	design	of	control	charts	that	take	into	account	the	economic	aspects	in	addition	to	
statistical	properties	(Sultana	et	al.,	2016).		In	this	regard,	Saniga	(1989)	eliminated	the	weakness	
of	 economic	 design	 by	 placing	 statistical	 constraints	 (depending	 on	 the	 design	 requirement)	
and	termed	it	economic	statistical	design.	This	design	eliminates	the	disadvantages	of	statistical	
schemes	and	economic	schemes	while	simultaneously	taking	into	account	statistical	and	economic	
aspects	and	is	in	fact	a	good	alternative	to	them().	Due	to	statistical	constraints,	economic	statistical	
plans	impose	a	higher	cost	than	economic	plans	on	the	system.	But	due	to	the	low	rate	of	false	
alarms	and	reduced	process	variability	that	leads	to	improved	quality,	it	 is	in	line	with	statistical	
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quality	control	objectives	while	controlling	product	quality	costs	at	a	desirable	level	of	error	and	
high	power(Montgomery,	2018). 

In	this	section,	we	also	use	Markov	chains	to	provide	a	model	for	economically	optimizing	
Shewhart	and	CUSUM	charts.	Specifically,	we	use	a	two-dimensional	time-discrete	Markov	chain	
describing:	 (1)	 the	 actual	 state	of	 the	process	 (a	 process	 under	 statistical	 control	 or	 under	 the	
influence	of	a	cause	deviation);	and	(2)	a	decision	that	samples	are	taken	each	time.	We	begin	by	

describing	this	approach	by	elaborating	the	Markov	model	for	the	Schwarz	 chart.

Shewhart chart
	 For	 the	 Schwartz	 chart	 with	 control	 limits	 ,	 the	

probability	 of	 the	 first	 type	 error	 is	 	 and	 the	 probability	

of	 the	 second	 type	 error	 is	

.	 Let	 	 represent	 the	 actual	 state	 of	

the	 process	 at	 the	 sampling	 time	 t	 where	 	 represents	 the	 state	 under	 control	

	 for	 the	 state	 out	 of	 the	 control	

 and 	for	the	state	out	of	control

.	 If,	 at	 the	 time	 of	 sampling	 t	 th,	 the	 absolute	 value	 of	 the	 mean	

standardized	sample	is	 	exceeds	the	control	limit	

,	an	alert	issued	based	on	the	process	to	be	out	of	control,	and	then	initiates	the	necessary	steps	

to	the	process.	The	decision	is	represented	by	 .	Otherwise,	when	it	is	

,	then	no	action	is	taken	 .	Random	time-discrete	model	for	the	process	

and	its	supervision	scheme,	based	on	the	combination	of	the	actual	state	of	the	process	is	  and 

the	value	 	is	at	t.	The	pair	( ,	 )	represents	the	state	of	a	two-dimensional	time-discrete	
Markov	chain	(DTMC)	with	specific	features	that	each	step	may	take	when	measuring	in	real	time	
units	have	different	periods	of	time.	There	are	six	possible	modes	and	the	probability	matrix	of	the	
transfer	is	as	follows:

Figure 1:	Time	between	two	consecutive	sampling	associated	with	the	exit	of	each	of	the	six	
Markov	chains	3
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 The	 steady-state	 probabilities	 ( ,	 ),	 denoted	 by	 the	 symbol	

,	can	be	obtained	by	solving	the	system	of	
linear	steady	state	equations	and	can	be	used	to	estimate	the	expected	long-term	cost	in	time	unit	

as	the	ratio	of	the	average	cost	of	a	transition	step	over	its	average	duration:	if	 	is	the	expected	

cost and 	the	duration	of	a	transition	from	state	  to a 
different	or	identical	state	at	the	next	sampling,	then	the	expected	long-term	cost	at	each	unit	time	
is:

	 (3)	 	 	 	 	 	 	 	 	 	

	 More	specifically,	the	expected	costs	of	 	between	two	consecutive	sampling	periods	
associated	with	existing	each	of	the	six	possible	Markov	chains	are:

If	the	chart	does	not	issue	any	alarts	 	the	

time	to	next	sampling	is	only	equal	to	 .	But	if	an	alert	is	issued,	the	length	of	time	is	increased	
by	the	number	of	study	times	and	correction,	unless	the	alert	is	false	and	the	process	continues	

during	the	study	 ;	then	T	is	part	of	 	,	assuming	that	its	value	does	not	exceed	

.	Note	that	the	value	of	 	appears	in	all	high-cost	terms,	

,	because	the	sampling	cost	is	constant	regardless	of	the	state	of	the	process	

.	 Cost	 of	 a	 false	 alert,	 	 ,	 only	 appears	 in	 because	 state	 (0,1)	 is	
the	only	state	associated	with	a	false	alert.	Similarly,	 the	cost	of	process	correction	after	a	true	

alert,	 ,	 only	 appears	 in	 ,	 .	 The	 other	 expected	 costs	 resulting	 from	 the	

performance	of	the	process	under	the	influence	of	a	cause	deviation	during	the	 	interval	are	
somewhat	less	obvious,	as	this	quantity	depends	on	the	expected	time	during	which	the	process	

operates	out	of	control.		This	charge	is	equal	to	the	value	of	 	for	distances	starting	from	

 and 	 from	 DTMIC,	 since	
these	states	represent	a	second	type	error	of	the	chart	and	thus	the	operation	is	out	of	process	

control	 for	 the	entire	 	 interval	until	 the	next	sample.	The	cost	of	

is	borne	by	the	system	during	the	operational	time	before	eliminating	a	

cause	deviation	when	  or 
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.	Finally,	 	is	the	expected	cost	of	being	out	of	control	of	the	system	at	  
intervals,	provided	that	the	system	is	controlled	at	the	beginning	of	this	interval,	i.e.,	when	DTMIC	

is in state  or 	and	this	cost	is	
also	subject	to	elimination	after	eliminating	an	cause	deviation	when	(1	=	Y	=	1,	at)	or		(	Y=2,	4=1);	in	
particular,	if	π	represents	the	conditional	expected	time	on	a	cause	deviation	from	a	given	interval,	
provided	that	such	an	event	occurs	in	that	interval,	then	the	process	affected	by	it	for	an	expected	

time	 	will	work.
	 As	 a	 result,	 the	 unconditional	 expected	 time	 for	 performance	 out	 of	

control	 at	 a	 time	 interval	 	 in	 which	 the	 process	 begins	 its	 activity	 in	 a	 controlled	

state	 is	 equal	 to	 .	 Duncan’s	 studies	 (1956)	 have	 shown	 that	

 and 

since 	we	have	

	.	Therefore,	the	expected	cost	corresponding	to	

state	out	of	control	is	equal	to	 .	By	grouping	similar	cost	terms	together,	
Equation	(3)	can	be	simplified	as	follows:

	 	 	 (4)		 

In	 the	 special	 case	  or 

,	the	steady	state	probabilities	 	are:

If	we	substitute	the	 mentioned	in	(5),	then	we	will	have:
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										(5)

	 The	above	phrase	is	almost	identical	to	the	corresponding	one	in	the	studies	of	Lorenzen	
and	Vance	(1).	There	is	only	one	small	difference	in	the	cost	of	sampling,	which	is	due	to	different	
assumptions	in	their	model,	that	way,	the	sampling	never	stops	as	long	as	the	process	works.

CUSUM chart
	 To	monitor	the	process	average	using	the	CUSUM	chart,	the	usual	method	is	to	use	two	

separate	CUSUM	statistics,	for	example,	 	to	detect	upstream	transitions	and	  to detect 
downstream	transitions.

	,

	 Where	 is	 mean	 of	 the	 standardized	 sample	 and	 	 is	 the	
reference	value	of	the	CUSUM	chart.	An	alert	is	issued	when	both	statistics	exceed	the	H	control	

limit.	An	alternative	method,	proposed	by	Crosier	(1986),	uses	only	one	 statistic	that	can	
have	positive	or	negative	values:

	,

	 An	alarm	time	is	issued	when	  or 	is	set.	The	Markov	

chain	which	describes	the	evolution	of	the	process	at	the	time	of	observation	by	the	CUSUM	  

type	chart	is	equivalent	to	{...0٫٫٫٫٫	=	 )	,	t	)}	where		 	is	the	actual	state	of	the	process	

and 	is	the	value	of	the	CUSUM	statistic	in	the	sample	t.	For	practical	purposes,	the	value	of	

 to ,	which	follows	the	Brook	and	Evans	(1972)	approach.

Using	the	above	 	discontinuity,	the	Markov	chain	has	a	  
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possible	state	( and )	with	the	probability	of	transferring	it	as	follows:

(6)									

Consequently,	the	probability	matrix	of	the	transfer	would	be	as	follows:

	 The	above	matrix	elements	are	divided	into	nine	parts,	which	include	the	probability	of	

moving	from	 	to	C	for	each	of	the	nine	possible	combinations	of	  and 

.	The	exact	expressions	for	the	probabilities	of	 	are	given	below.

	 Similarly	to	the	Schwartz	charts,	the	steady-state	probabilities	of		  for 

	(i	=	0,	1,	2,	j	=	m….m)	are	used	to	estimate	the	expected	cost	per	unit	time	used,	it	
can	be	written	as	follows:

					(7)

	 The	cost	function,	ECT2,	is	the	exact	form	of	ECT1	for	the	CUSUM	charts,	and	the	explanation	
of	all	its	quantities	is	similar	to	the	ECT1	terms.	Note	that	this	Markov	model	does	not	require	explicit	
calculation	and	ARL.

Numerical comparison
	 We	perform	numerical	 analysis	 to	 investigate	 the	 potential	 cost	 savings	 of	 choosing	 a	

CUSUM	chart	instead	of	choosing	a	Schwartz	chart	to	monitor	a	process.	The	numerical	investigation	

covers	three	cases	covering	a	wide	range	of	cost	parameters	
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and	process	parameters	( )	as	shown	in	Table	1.	In	all	48	cases,	certain	parameters	were	kept	
constant:	repair	cost	L1=200	and	negligible	time	to	seek	a	cause	deviation	and	correction	process:	
0	=	T2	=	T.	=	T1.	Although	the	models	are	adaptable	enough	to	accommodate	non-negligible	search	
and	modification	times,	our	numerical	investigation	has	shown	that	the	effect	of	these	times	on	
process	design	parameters	and	costs	is	minimal	and,	therefore,	due	to	cost	savings	and	simplicity,	
we	set	their	values			to	zero.		We	also	assume	that	the	process	stops	after	the	alert	is	declared	for	

review	( ).	In	addition,	when	the	system	is	repaired	and	restored	after	a	proper	alert	

the	process	is	stopped	( ).	Finally,	we	set	the	relation	 	in	all	
cases.

	 For	 each	 specific	 set	 of	 parameters,	 we	 first	 determine	 the	 economic	 design	 of	 the	
Schwartz	chart	with	respect	to	Equation	(7)	and	then	compare	them	with	the	optimal	parameters	
and	cost	of	the	CUSUM	chart	obtained	from	the	equation.	To	expedite	the	optimization	procedure,	

we	allow	  and to	be	 integers	of	0.1,	and	by	setting	 ,	we	use	a	
similar	discrete	step	for	the	control	limit	H	in	the	CUSUM	chart	with	an	initial	value	of	0.05	(m	=	1).	

Note	that	the	number	of	states	used	to	discrete	Markov	chains	of	CUSUM	chart,	with	

,	depends	on	the	actual	value	of	H	in	each	case.
	 Table	2	shows	the	optimal	parameters	and	costs	of	the	Schwartz	and	CUSUM	charts	for	the	

48	items	in	Table	1.	The	percentages	of	profits	from	using	the	CUSUM	chart	instead	of	the	Schwartz	
chart	are	shown	in	the	last	column	of	Table	2.	Table	2	shows	that	the	sampling	interval	and	sample	
size	of	the	CUSUM	scheme	are	not	significantly	different	from	those	corresponding	to	the	Schwartz	

scheme.		In	particular,	in	many	cases,	both	the	optimal	parameters	  and 	for	the	CUSUM	chart	

are	partially	smaller	than	  and 	corresponding	to	the	Schwartz	chart.	The	improvement	in	the	
cost	of	the	CUSUM	chart	was	less	than	0.7%	over	all	48	cases	we	reviewed.

As	 a	 result,	 it	 is	 clear	 that	 from	 the	 economic	 point	 of	 view	 the	 CUSUM	 chart	 is	 not	

significantly	superior	to	the	standard	 	chart,	even	when	the	rate	of	change	is	small.	Note	that	Ho	
(1994),	although	their	numerical	results	were	very	similar	to	ours,	concluded	that	the	CUSUAL	chart	

works	much	better	than	the	standard	 	chart.	More	importantly,	our	results	are	also	inconsistent	
with	the	results	obtained	by	Keats	and	Simpson	(1994),	who	found	that	the	CUSUM	chart	performs	
significantly	better	than	the	Schwartz	chart.	Our	guess	is	that	this	inconsistency	may	be	due	to	the	

inaccuracy	of	the	calculations	and	the	use	of	 	in	the	model	to	economically	optimize	
the	CUSUM	scheme.

The	results	in	Table	2	are	surprising	given	the	widespread	understanding	that	CUSUM	chart	
are	far	more	effective	than	Schwartz	chart,	at	least	in	detecting	small	to	medium	displacements.	
Given	the	above	observations	and	concerns,	we	first	validate	the	results	of	Table	2	by	simulation	
and	then	extend	the	numerical	investigation	to	improve	our	findings.

Finally,	it	should	be	emphasized	that	there	are	many	practical	applications	where	sample	
sizes	are	not	necessarily	uniform,	but	they	are	limited	to	relatively	small	amounts	for	logical	grouping	

or	other	reasons.	Limiting	the	sample	size,	such	as	 ,	can	cause	the	CUSUM	chart	to	
perform	significantly	better	than	its	corresponding	Schwartz	chart,	unless	the	sample	size	without	
the	optimal	limit	is	greater	than	five.

 The	difference	in	the	economic	performance	of	these	two	charts,	if	there	is	a	limit	on	the	
sample	size,	is	somewhere	between	the	differences	observed	in	the	case	of	n	infinite	and	n	=	1.	

	 For	example,	consider	item	1	of	Table	1	with	c	=	1.	If	there	is	no	limit	on	sample	size,	we	
can	see	from	Table	2	that	both	sample	sizes	are	relatively	large	and	have	approximately	identical	
average	costs:		ECT1	=	11.76	with	n	=	24	Schwartz	chart	and	ECT2=	11.72	with	n	=	23	for	the	CUSUM	
chart.	

If	the	sample	size	is	restricted	by	 	for	logical	grouping,	then	the	average	cost	of	
the	two	constrained	chart	(n	=	5)	is	equal	to	ECT1	=	12.14	and	ECT2	=	12.39	(a	difference	of	12.3%).	If	
the	n	=	1	constraint	is	applied	to	the	sample	size,	it	can	be	seen	from	the	table	that	it	is	ECT1	=	14.73	
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and	ECT2	=	12.57	and	the	CUSUM	economic	advantage	increased	by	7.14%.

Table 1:	Set	of	48	parameters	for	numerical	example	

Case

1 0 100 100 0.01 0.5
2 0 100 200 0.01 0.5
3 0 1000 100 0.01 0.5
4 0 1000 200 0.01 0.5
5 5 100 100 0.01 0.5
6 5 100 200 0.01 0.5
7 5 1000 100 0.01 0.5
8 5 1000 200 0.01 0.5
9 0 100 100 0.1 0.5
10 0 100 200 0.1 0.5
11 0 1000 100 0.1 0.5
12 0 1000 200 0.1 0.5
13 5 100 100 0.1 0.5
14 5 100 200 0.1 0.5
15 5 1000 100 0.1 0.5
16 5 1000 200 0.1 0.5
17 0 100 100 0.01 0.5
18 0 100 200 0.01 0.5
19 0 1000 100 0.01 0.5
20 0 1000 200 0.01 0.5
21 5 100 100 0.01 0.5
22 5 100 200 0.01 0.5
23 5 1000 100 0.01 0.5
24 5 1000 200 0.01 0.5
25 0 100 100 0.1 0.5
26 0 100 200 0.1 0.5
27 0 1000 100 0.1 0.5
28 0 1000 200 0.1 0.5
29 5 100 100 0.1 0.5
30 5 100 200 0.1 0.5
31 5 1000 100 0.1 0.5
32 5 1000 200 0.1 0.5
33 0 100 100 0.01 0.5
34 0 100 200 0.01 0.5
35 0 1000 100 0.01 0.5
36 0 1000 200 0.01 0.5
37 5 100 100 0.01 0.5
38 5 100 200 0.01 0.5
39 5 1000 100 0.01 0.5
40 5 1000 200 0.01 0.5
41 0 100 100 0.1 0.5
42 0 100 200 0.1 0.5
43 0 1000 100 0.1 0.5
44 0 1000 200 0.1 0.5
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45 5 100 100 0.1 0.5
46 5 100 200 0.1 0.5
47 5 1000 100 0.1 0.5
48 5 1000 200 0.1 0.5

Table 2:	Comparison	of	Schwartz	chart	with	CUSUM	charts	(c	=	1)
Schwartz optimization Optimization of CUSUM

Case Percentage	of	cost	
improvement	(%)

1 7.2 24 1.6 11.76 6.9 23 1.1 0.6 11.72 5.65 0.4
2 8.3 32 1.9 12.64 7.8 30 1.3 0.7 12.59 16.82 0.4
3 2.2 24 1.6 33.92 2.1 23 1.1 0.6 33.77 - 0.4
4 2.5 34 2.0 36.81 2.4 31 1.3 0.7 36.64 - 0.5
5 8.3 27 1.6 12.41 8.0 26 1.1 0.6 12.39 - 0.2
6 9.1 34 1.9 13.22 9.0 34 1.4 0.6 13.19 22.85 0.2
7 2.6 28 1.6 36.01 2.5 27 1.2 0.5 35.94 7.00 0.2
8 2.8 35 1.9 38.69 2.7 34 1.4 0.6 38.58 - 0.3
9 2.8 21 1.5 45.46 2.6 20 0.9 0.7 45.32 - 0.3
10 3.2 28 1.8 47.70 3.0 26 1.1 0.8 47.53 9.82 0.4
11 0.7 23 1.6 1117.66 0.7 23 1.1 0.6 117.18 - 0.4
12 0.8 31 1.9 126.46 0.8 31 1.3 0.7 125.90 - 0.4
13 3.3 23 1.4 47.13 3.2 22 0.9 0.6 47.05 - 0.2
14 3.6 31 1.8 49.17 3.5 30 1.2 0.7 49.08 - 0.2
15 0.8 26 1.6 124.09 0.8 26 1.1 0.6 123.86 - 0.2
16 0.9 34 1.9 132.18 0.9 34 1.4 0.6 131.86 - 0.2
17 4.4 10 2.2 7.82 4.4 10 1.5 0.8 7.79 - 0.4
18 4.7 12 2.5 8.20 4.	7 12 1.7 0.9 8.16 - 0.5
19 1.4 10 2.2 20.82 1.3 10 1.6 0.7 20.72 - 0.5
20 1.6 13 2.5 22.03 1.4 12 1.7 0.9 21.90 - 0.6
21 5.9 12 2.2 8.78 5.8 12 1.7 0.6 8.77 - 0.1
22 6.3 14 2.4 9.09 6.2 14 1.9 0.6 9.08 - 0.2
23 1.8 12 2.2 23.91 1.8 12 1.7 0.6 23.89 - 0.1
24 1.9 14 2.5 24.93 1.9 14 1.9 0.6 24.88 - 0.2
25 1.7 10 2.2 35.90 1.5 9 1.4 0.9 35.80 2.37 0.3
26 1.9 12 2.4 36.90 1.7 11 1.6 0.9 36.78 - 0.3
27 0.5 11 2.2 78.39 0.4 9 1.5 0.8 77.95 2.35 0.6
28 0.5 13 2.5 81.97 0.5 12 1.7 0.8 81.66 - 0.4
29 2.2 11 2.1 38.48 2.2 11 1.6 0.6 38.45 - 0.1
30 2.3 13 2.4 39.30 2.3 13 1.8 0.6 39.27 - 0.1
31 0.6 12 2.2 87.81 0.6 12 1.7 0.5 87.75 - 0.1
32 0.6 14 2.5 90.96 0.6 13 1.8 0.7 90.82 - 0.2
33 2.7 4 2.8 5.31 2.2 3 1.7 1.1 5.29 - 0.4
34 2.8 4 2.9 5.46 2.7 4 2.0 1.0 5.44 - 0.5
35 0.9 4 2.7 12.46 0.7 3 1.7 1.1 12.57 - 0.6
36 0.9 4 2.9 13.14 0.8 4 2.0 1.1 13.5 - 0.7
37 4.6 5 2.7 6.71 4.5 5 2.2 0.6 6.71 - 0.0
38 4.5 5 2.9 6.81 4.6 5 2.3 0.6 6.81 - 0.0
39 1.4 5 2.7 17.13 1.4 5 2.2 0.6 17.12 - 0.1
40 1.4 5 2.9 17.47 1.4 5 2.3 0.6 17.46 0.98 0.0
41 1.0 4 2.8 29.26 0.8 3 1.7 1.1 29.16 - 0.3
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42 1.0 4 2.9 29.66 1.0 4 2.0 1.0 29.59 - 0.2
43 0.3 4 2.7 53.17 0.2 3 1.7 1.2 53.02 - 0.3
44 0.3 4 2.9 54.75 0.3 4 2.0 1.0 54.52 - 0.4
45 0.3 5 2.7 33.11 1.6 4 2.0 0.6 33.11 - 0.0
46 1.7 5 2.9 33.38 1.7 5 2.2 0.7 33.36 - 0.0
47 0.5 5 2.7 67.26 0.5 5 2.2 0.5 67.26 - 0.0
48 0.5 5 2.8 68.34 0.5 5 2.2 0.7 68.29 - 0.1

Following	the	various	constraints	on	these	values,	we	present	the	results	of	the	statistical-
economic	design	of	the	CUSUM	diagram.

Table 3:	Results	of	statistical-economic	design	of	the	CUSUM	chart	(c	=	1)
Optimization	of	CUSUM

Case Percentage	
of cost 

improvement	
(%)

1 4.28 13 1.05 0.6 13.27 2.84 13
2 3.08 15 1.59 0.7 15.36 7.18 22

6 3.16 15 1.52 0.6 17.34 5.59 31
7 3.40 15 0.62 0.5 36.8 1.86 2.3
10 5.14 20 0.76 0.8 48.90 3.90 2.8
25 4.47 6 086 0.9 40.51 1.42 13
27 0.90 8 1e 0.8 94.08 1.70 20
40 1.34 1 1.5 0.6 32.73 0.57 87

Note	that	the	above	equation	or	other	different	methods	can	be	used	to	calculate

.	In	this	paper,	the	equation	with	  and 	is	used.

Conclusion
We	propose	a	simple	and	accurate	Markov	chain	model	 for	economically	optimizing	the	

Schwartz	 charts	 and	 the	 CUSUM	 to	 monitor	 the	 average	 quality	 characteristic	 with	 a	 normal	
distribution.	Our	numerical	investigation	led	to	the	following	results.

CUSUM	charts	are	economically	superior	to	Schwartz	charts	only	when	process	monitoring	
is	based	on	 individual	measurements	 (sample	 size	=	n).	 If	 there	 is	no	 limit	on	 the	 size	of	each	
sample,	the	economic	performance	of	the	optimal	CUSUM	charts	almost	equals	that	of	the	optimal	
Schwartz	charts,	even	when	the	predicted	change	is	small.	Between	the	two,	where	the	sample	size	
is	limited	to	small	quantities	for	reasons	such	as	the	need	for	logical	grouping	and	also	small-scale	
variations,	the	CUSUM	chart	can	perform	significantly	better	than	the	Schwartz	chart.

From	a	pure	economic	point	of	view,	and	 in	 the	absence	of	sample	size	constraints,	 the	
usual	choice	of	n	=	4	or	n	=	5	for	both	family	Schwartz	charts	and	for	CUSUM	charts	is	always	less	
important	than	larger	ones	in	detecting	small	deviations.	Sample	size	n٫	>	can	only	be	economically	
feasible	if	the	projected	change	in	the	mean	of	the	process	involves	medium	to	large	values			and	the	
cost	of	sampling	is	very	low.

3.	When	the	sample	size	is	strictly	limited	to	n	=	1	or	when	the	sampling	cost	is	very	high	
and	the	rate	of	change	is	small,	it	is	usually	not	optimal	to	monitor	the	process	through	sampling	
but	rather	to	control	it	using	a	preventive	maintenance	policy	can	be	very	desirable.	As	a	result,	this	
option	should	always	be	considered	as	an	alternative	to	the	usual	SPC	method.
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