LABORATÓRIO DE DIAGNOSE DE PLANTAS

> Ingrid Sara Silva Vieira Geovana de Souza Andrade Mayra Fonseca Costa Evelynne Urzêdo Leão

LABORATÓRIO DE DIAGNOSE DE PLANTAS

-WL

Clique aqui e veja mais publicações

Reitor Augusto de Rezende Campos

Vice-Reitora Darlene Teixeira Castro

Pró-Reitora de Graduação Alessandra Ruita Santos Czapski

Pró-Reitora de Pesquisa e Pós-Graduação

Ana Flávia Gouveia de Faria

Pró-Reitora de Extensão, Cultura e Assuntos Comunitários

Kyldes Batista Vicente

Pró-Reitor de Administração e Finanças Ricardo de Oliveira Carvalho

Equipe Editorial

Editora-chefe Liliane Scarpin S. Storniolo

Сара

Leandro Dias de Oliveira

Projeto Gráfico e Diagramação

Joelma Feitosa Modesto Leandro Dias de Oliveira

Apoio Técnico Leonardo Lamim Furtado

Revisão

Flávia dos Passos Rodrigues Hawat Lilian Mara Nogueira Dias Marina Ruskaia Ferreira Bucar Rubens Martins da Silva

Contato Editora Unitins

(63) 3901-4176 108 Sul, Alameda 11, Lote 03 CEP.: 77.020-122 - Palmas - Tocantins

Os autores são responsáveis por todo o conteúdo publicado, estando sob a responsabilidade da legislação de Direitos Autorais 9.610/1998 e Código Penal 2.848/1940.

L123 Laboratório de diagnose de plantas/ Organizado por: Ingrid Sara Silva Silveira, Geovana de Souza Andrade, Mayra Fonseca Costa, Evelynne Urzêdo Leão. Palmas TO: Unitins, 2025.

50p.; color.

6,58 KB; ePUB

ISBN 978-85-5554-178-0

1 Laboratório. 2 Diagnose. 3 Plantas. I. Título.

CDD 616.075

Ficha catalográfica elaborada pela Bibliotecária Ysabella Canindé Guerreiro Macêdo CRB-2/1191

UNIVERSIDADE ESTADUAL DO TOCANTINS DIRETORIA DE PESQUISA AGROPECUÁRIA (DPA) COMPLEXO DE CIÊNCIAS AGRÁRIAS (CCA)

LABORATÓRIO DE DIAGNOSE DE PLANTAS

Normas gerais, instruções de trabalho e Procedimentos Operacionais Padrões (POP)

Equipamentos

Autoras

Ingrid Sara Silva Vieira Técnica do Laboratório de Cultura de Tecidos/Unitins

Geovana de Souza Andrade Técnica do Laboratório de Diagnose de Plantas/Unitins

Mayra Fonseca Costa Professora, Coordenadora dos Laboratórios do CCA/Unitins

> Evelynne Urzêdo Leão Professora, Diretora de Pesquisa/Unitins

Dados das Autoras

Ingrid Sara Silva Vieira

Graduada em Engenharia Agronômica pela UNITINS (2024) e Técnica em Informática pelo IFTO (2017). Possui experiência em propagação de plantas nativas do Cerrado, fitopatologia e protocolos experimentais em nutrição de peixes. Atualmente, é técnica de laboratório na UNITINS, atuando na manipulação de microrganismos e propagação in vitro de plantas.

Ma. Geovana de Souza Andrade

Graduada em Ciências Biológicas pela UFT (2018) e licenciada pela UFT, Campus Porto Nacional (2023). Mestranda em Biodiversidade, Ecologia e Conservação pela UFT (2021). Atualmente, é técnica do Laboratório de Diagnose de Plantas da UNITINS, com experiência em ecologia aquática, reprodução de peixes nativos e conservação de espécies nativas.

Dra. Mayra Fonseca Costa

Graduada em Química Ambiental pela UFT (2014) e Licenciatura em Química pela Universidade de Franca (2019). Mestre e Doutora em Química pela UNESP, com ênfase em Produtos Naturais e fitorremediação de metais. Atua no isolamento e estudo de bioatividade de metabólitos secundários de plantas aquáticas e fungos endofíticos.

Dra. Evelynne Urzêdo Leão

Graduada em Agronomia pela UFT (2008), Mestre em Produção Vegetal (2011) e Doutora em Agronomia (2015) pela UNESP. Foi bolsista de Pós-doutorado (2015-2016) na UFT, atuando nas áreas de Fitopatologia, Biologia Molecular e Diagnose de Fungos. Atualmente, é docente e Diretora de Pesquisa Institucional na UNITINS e docente na Católica do Tocantins.

APRESENTAÇÃO

O Laboratório de Diagnose de Plantas é um espaço na Universidade Estadual do Tocantins (Unitins), situado no Complexo de Ciências Agrárias (CCA), no Centro Agrotecnológico de Palmas. Localiza-se na rodovia TO-050, km 23, estrada vicinal km 08, zona rural de Palmas-TO. Esse laboratório foi idealizado para ser um núcleo de excelência em fitopatologia, contribuindo de maneira significativa para a saúde vegetal e o desenvolvimento agrícola sustentável na região.

O laboratório se especializa na detecção de doenças em plantas, abrangendo diferentes estruturas vegetais afetadas. Além disso, oferece serviços especializados na identificação de patógenos presentes em sementes e no solo. Essa atuação contribui para diagnósticos precisos e o manejo eficaz de doenças, atendendo tanto as demandas acadêmicas quanto as necessidades do setor produtivo.

Equipado com instrumentos modernos e uma infraestrutura projetada para atender aos pesquisadores, alunos e comunidade, o laboratório não apenas apoia a pesquisa científica, mas também desempenha um papel crucial na formação de alunos, proporcionando a eles experiências práticas e envolvimento direto em projetos acadêmicos. É um espaço onde ensino e pesquisa se encontram, fomentando estudos sobre doenças de plantas e o avanço do conhecimento na área de fitopatologia.

Neste contexto, visando garantir a eficiência e segurança no uso dos equipamentos disponíveis no Laboratório de Diagnose de Plantas, este manual foi desenvolvido como um guia prático para otimizar os procedimentos operacionais. Ele visa promover a fluidez das atividades diárias realizadas no laboratório, assegurar o uso correto e ético dos recursos disponíveis, e contribuir para a excelência das análises e diagnósticos realizados.

Dessa forma, a cartilha se torna uma ferramenta indispensável para pesquisadores, estudantes e profissionais que utilizam este espaço, reforçando a missão do laboratório de apoiar o desenvolvimento acadêmico e a pesquisa aplicada na área de ciências agrárias.

SUMÁRIO

NORMAS GERAIS E INSTRUÇÕES DE TRABALHO
1. Principais normas de segurança em laboratório de diagnose de plantas 10
2. Limpeza do laboratório11
3. Descarte de materiais e amostras 12
EQUIPAMENTOS
1. Agitador magnético com aquecimento14
2. Autoclave vertical
3. Balança semi-analítica 18
4. Balança analítica
5. Banho maria
6. Cabine de segurança biológica 24
7. Câmara de germinação 26
8. Bancada de fluxo laminar horizontal
9. Câmara incubadora B.O.D. com fotoperíodo e alternância de temperatura 30
10. Centrífuga
11. Contador de colônias para placas Petri
12. Espectrofotômetro de luz visível
13. Estufa de secagem com circulação de ar
14. Mesa agitadora orbital 40
15. Microscópio/Lupa estereoscópio 42
16. Microscópio 44
17. pHmetro de Bancada 46
18. Vórtex

NORMAS GERAIS E INSTRUÇÕES DE TRABALHO

পু

1. Principais normas de Segurança em Laboratório de Diagnose de Plantas (Fitopatologia)

Uso de equipamentos de proteção individual (EPIs): O uso de jalecos, luvas e máscaras é obrigatório durante todas as atividades no laboratório. Isso minimiza a exposição a produtos químicos e agentes biológicos.

Fonte: Imagem gerada por Inteligência Artificial, 2024.

Prevenção de contaminações: Realizar a desinfecção de bancadas e superfícies antes e após o uso de materiais biológicos. Evitar a circulação de pessoas desnecessárias no laboratório durante procedimentos sensíveis.

Fonte: Imagem gerada por Inteligência Artificial, 2024.

Manuseio de amostras: Manter todas as amostras devidamente rotuladas, com data e tipo de material. Utilizar equipamentos específicos para a manipulação de amostras contaminantes para evitar cruzamento de patógenos.

Fonte: Freepik.com, 2024.

Manuseio de amostras: Manter todas as amostras devidamente rotuladas, com data e tipo de material. Utilizar equipamentos específicos para a manipulação de amostras contaminantes para evitar cruzamento de patógenos.

Fonte: Imagem gerada por Inteligência Artificial, 2024.

2. LIMPEZA DO LABORATÓRIO

• Limpeza diária: Todos os dias, antes e após o uso, as bancadas devem ser limpas com álcool 70% ou produtos de limpeza apropriados.

• Resíduos sólidos e líquidos: Separar adequadamente os resíduos sólidos (como luvas, papeis toalha) dos resíduos líquidos (soluções químicas, ácidos). Sólidos contaminados devem ser descartados adequadamente.

• Equipamentos: Limpar todos os equipamentos usados após cada uso. Autoclaves, microscópios e centrífugas precisam ser higienizados conforme o manual de uso, com atenção à manutenção regular.

• Manutenção geral: Verificar periodicamente a limpeza e o estado das geladeiras e incubadoras (B.O.D.), removendo amostras expiradas e materiais que não estejam mais em uso.

3. DESCARTE DE MATERIAL E DE AMOSTRAS

• Descarte de amostras biológicas: Materiais biológicos, como fungos, bactérias ou plantas infectadas devem ser autoclavados antes do descarte. Esse procedimento é essencial para garantir a descontaminação de amostras biológicas que possam conter microrganismos patogênicos ou agentes infecciosos. A autoclavação utiliza vapor de água sob alta pressão e temperatura (geralmente entre 120°C) para eliminar qualquer risco biológico.

Figura 1. Fluxograma do processo de descarte de amostras biológicas.

Fonte: Elaborada pelas autoras usando imagens do Google Imagens.

• Descarte de produtos químicos: Produtos químicos devem ser descartados de acordo com as diretrizes de segurança ambiental. Resíduos líquidos, como ácidos e bases, devem ser neutralizados antes do descarte, e os reagentes mais perigosos devem ser tratados conforme as fichas de segurança.

Figura 2. Fluxograma de descartes de produtos químicos.

Fonte: Elaborada pelas autoras

• Materiais cortantes: Agulhas, lâminas e outros objetos perfurocortantes devem ser descartados em recipientes rígidos para evitar acidentes.

Figura 3. Recipiente de Depósito de Materiais Perfurocortantes.

Fonte: Descarbox. Disponível em https://descarbox.com.br/pt-br/.Acesso em 28 de janeiro de 2025.

PROCEDIMENTOS OPERACIONAIS PADRÕES (POP)

পু

-Ŵ-

- EQUIPAMENTOS ·

1. Agitador Magnético com Aquecimento

Modelo: SSAGDa - 10 L SolidSteel

O agitador magnético é um equipamento para laboratório que permite a agitação de volumes de até 10 litros de água ou líquido com densidade semelhante à água, entre 0 e 3.000 rpm, com temperatura de regulagem entre 5°C acima da temperatura ambiente a 350 °C.

Componentes do Equipamento:

- Chave ON/OFF (parte traseira)
- Fusível de Segurança (parte traseira)
- Cabo de Energia (parte traseira)
- Botão Start/Stop
- Display Agitação em cristal líquido
- Teclas de Ajuste de Velocidade de Agitação
- Teclas SET de Ajuste de Agitação e Temperatura
- Display Temperatura em cristal líquido
- Leds Indicativos
- Troca de Sensores

Operação:

Verificar se a tensão está em 220 Volts

1. Coloque o recipiente com o líquido a ser agitado sobre o equipamento.

2. Conecte a tomada na rede elétrica, posicionando a chave em ON (parte traseira do aparelho).

3. Para iniciar a agitação, pressione o botão START/STOP.

4. Para ajustar a agitação, conforme a metodologia desenvolvida, utilize as teclas de ajuste (aumentar e diminuir) do lado esquerdo do equipamento.

5. Para programar a temperatura, pressione o botão SET duas vezes, localizado ao lado direito do equipamento, prosseguindo com o ajuste nos botões de aumentar e diminuir do lado direito do aparelho. Pressione SET uma vez para gravar a programação escolhida.

6. Aguarde 15 segundos para calibração de temperatura após as configurações manuais e o equipamento iniciará seu aquecimento automaticamente.

7. Após a utilização, pressione o botão START/STOP e ajuste a chave em OFF.

8. Retire o equipamento da tomada.

Alguns equipamentos semelhantes não possuem as teclas descritas, necessitando apenas do ajuste de agitação e temperatura girando o botão correspondente.

14

- Nunca molhar as partes elétricas ou derramar líquidos no interior do equipamento.
- Limpá-lo periodicamente com auxílio de um pano úmido sem agentes químicos e após o uso.

Figura 1. Imagem frontal do agitador magnético com aquecimento

Fonte: Prolab. Disponível em: https://www.prolab.com.br/. Acesso em: 25 de set. 2024.

Registro

Não aplicável

2. Autoclave Vertical

Modelo: Autoclave CS - Prismatec

A autoclave vertical é um equipamento laboratorial utilizado para a esterilização de materiais diversos através do vapor de água saturado, com manômetros que registram uma escala de pressão operacional entre 1 e 1,5 kgf/cm² (máxima pressão admissível) e temperatura entre 100 a 143°C.

Componentes do Equipamento:

- Câmara de Esterilização em Aço Inox
- Tampa em Bronze Fundido Vedada em Silicone
- Válvula de Segurança e Controle de Pressão com Contra-peso Regulável
- Manípulos em Baquelite Isolante ao Calor
- Resistência Tubular de Imersão
- Manômetro de Pressão e Temperatura
- Painel com Chave Comutadora ou Seletora de Calor (MIN, MED, MAX) e lâmpada indicadora liga/desliga
- Cesto Interno em Aço Inox
- Registro de Esfera para Drenagem e Limpeza
- Registro de Saída de Vapor na Tampa da Autoclave
- Pé de Regulagem
- Cabo de Energia (parte traseira)

Operação:

Verificar se a tensão está em 220 Volts

- 1. Abra a tampa e complete a água até o nível do descanso do cesto.
- 2. Coloque o material a ser autoclavado no cesto de inox no interior do equipamento.
- 3. Feche a tampa e aperte por igual os manípulos até o limite de vedação.
- 4. Abra o registro localizado na tampa da autoclave e ligue a chave comutadora no calor máximo (MAX).
- 5. Após a saída de vapor no bico do registro na tampa, feche a válvula novamente.

6. Atingida a pressão de trabalho, coloque a chave comutadora no calor médio (MED) e inicie a contagem do tempo de esterilização.

7. Após o tempo, desligue a chave comutadora e abra o registro da tampa da autoclave para a saída de vapor. Quando o manômetro registrar ZERO de pressão, abra a tampa do equipamento e retire o material.

8. Desligue a autoclave da rede elétrica após o uso.

- Verificar o nível da água a cada esterilização para evitar danos nas resistências.
- Ao manipular vidros fechados, deixar esfriar normalmente sem abrir o registro de saída de vapor, para evitar quebrá-los.
- Se o equipamento for ficar em desuso por tempo prolongado, retirar toda a água e secá-lo para melhor preservação.
- Manipular os utensílios com proteção para evitar queimaduras severas.

Figura 2. Imagem frontal da autoclave vertical - modelo CS Prismatec

Fonte: SP Labor. Disponível em: https://www.splabor.com.br/. Acesso em: 25 de set. 2024.

Registro

Não aplicável

3. Balança Semi-analítica

Modelo: BG 2000 - Quimis

A balança semi-analítica é um equipamento utilizado para a determinação de massas de acordo com as demandas laboratoriais, com maior precisão que as balanças convencionais.

Componentes do Equipamento:

- Tecla Liga/Desl.
- Tecla TARA
- Tecla Função
- Tecla Troca
- Tecla Imprime
- Display em cristal líquido
- Indicador de Nível
- Pé Ajustável
- Prato
- Cabo de Energia (parte traseira)
- Conector Saída para Impressora

Operação:

Verificar se a tensão está em 220 Volts.

1. Antes de ligar a balança, verifique se ela está nivelada, apresentando a bolha do indicador de nível posicionada no centro do círculo. Caso não esteja, regule o nível com o auxílio do pé ajustável da balança.

2. Após a nivelação, conecte o plugue da tomada fonte da balança à rede elétrica, verificando a indicação de funcionamento com a ativação do display.

3. Aguardar 30 minutos para a melhor estabilização e precisão da balança.

4. Após o tempo, aperte o botão Liga/Desl., e posicione o recipiente para pesagem sobre o prato da balança.

5. Aperte o botão TARA e aguarde o display zerar. Após esse procedimento, colocar a amostra a ser pesada no recipiente e aguardar a estabilização para o registro do peso do material.

6. Ao término da pesagem, aperte o botão Liga/Desl., e desconecte a balança da tomada.

- Limpar a balança após cada uso com um pano umedecido com detergente neutro.
- Evitar a utilização de produtos químicos diretamente sobre o aparelho que possam comprometer o seu funcionamento e preservação.
- Manter o equipamento em local sem trepidações e correntes de ar para evitar a descalibração.

Figura 3. Imagem frontal da balança semi-analítica.

Fonte: Arquivo pessoal.

Registro

Não aplicável

4. Balança Analítica

Modelo: Q-500L210C - Quimis

A balança analítica é um equipamento utilizado para a determinação de massas de acordo com as demandas laboratoriais, com maior precisão que as balanças semi-analíticas.

Componentes do Equipamento:

- Tecla Lig./Desl.
- Tecla T para realizar a tara do equipamento
- Tecla Cal para calibração
- Display em cristal líquido
- Indicador de Nível
- Pé Ajustável
- Prato
- Cabo de Energia (parte traseira)

Operação:

Verificar se a tensão está em 220 Volts.

1. Antes de ligar a balança, verifique se a mesma encontra-se nivelada, apresentando a bolha do indicador de nível posicionada no centro do círculo. Caso não esteja, regular o nível com o auxílio do pé ajustável da balança.

2. Após a nivelação, conecte o plugue da tomada fonte da balança à rede elétrica, verificando a indicação de funcionamento com a ativação do display.

3. Aguarde 30 minutos para a melhor estabilização e precisão da balança.

4. Após o tempo, aperte o botão Lig./Desl., e posicione o recipiente para pesagem sobre o prato da balança.

5. Aperte o botão T e aguarde o display zerar. Após esse procedimento, coloque a amostra a ser pesada no recipiente e aguarde a estabilização para o registro do peso do material.

6. Ao término da pesagem, aperte o botão Lig./Desl., e desconecte a balança da tomada.

7. Durante a tara e a leitura dos pesos, as portas da balança devem estar fechadas.

- Limpar a balança após cada uso com um pano umedecido com detergente neutro.
- Evite utilizar produtos químicos diretamente sobre o aparelho, pois pode comprometer o seu funcionamento e preservação.
- Manter o equipamento em local sem trepidações e correntes de ar para evitar a descalibração.

Figura 4: Imagem frontal da balança analítica

Fonte: Arquivo pessoal

Registro

Não aplicável

5. Banho Maria

Modelo: Q215M2 - Quimis

O Banho Maria é um equipamento que permite o aquecimento lento e uniforme de qualquer substância sólida ou líquida em recipientes, com faixa de trabalho entre 5°C acima da temperatura ambiente e 120°C.

Componentes do Equipamento:

- Tanque de Aço Inox
- Chave Geral para Ligar/Desligar o aparelho
- Controlador de Temperatura Microcontrolado com Duplo Display
- Sensor de Temperatura
- Motor de Agitação
- Cabo de Energia (parte traseira)
- Oliva para a entrada de água
- Oliva para a saída de água (ladrão)
- Dreno

Operação:

Verificar se a tensão está em 220 Volts.

1. Ligue a chave geral do aparelho.

2. Adicione água destilada até o limite de funcionamento do aparelho, representado por uma saliência no interior do tanque de aço inox, aproximadamente 3 cm acima da resistência.

3. Configure o equipamento conforme a metodologia utilizada.

4. Para a configuração de temperatura ou umidade, aperte a tecla (●) para acessar a programação.

5. Aperte a tecla com setas indicativas para a direita/esquerda (◀►) para mudar o dígito de sua escolha.

6. Aperte as teclas de decremento e incremento, representadas por setas acima/abaixo, inserindo o valor desejado.

7. Após a configuração, aguarde 15 minutos para a regulagem de temperatura com precisão de 1,5°C.

8. Quando a lâmpada do °C se apagar, indica que a temperatura e/ou umidade foi atingida, iniciando os ciclos de ligar e desligar para a regulagem dos parâmetros.

9. Após o uso, desligue a chave geral do equipamento e desconecte-o da tomada.

10. Drene a água do interior do banho maria e seque-o.

- Não utilizar água com elevada concentração de sais e outros compostos químicos no interior do equipamento, visando a preservação dos componentes internos.
- Sempre drenar a água e secar o interior do equipamento após o uso.

Figura 5. Imagem frontal do banho maria - modelo Q215M2.

Fonte: QUIMIS. Disponível em: https://www.quimis.com.br. Acesso em: 27 set. 2024.

Registro

Não aplicável

6. Cabine de Segurança Biológica

Modelo: PA 400 - Pachane

A Cabine de Segurança Biológica é um equipamento utilizado em laboratórios que requerem níveis de contenção de risco biológico e proteção adequada em materiais manipulados.

Componentes do Equipamento:

- Chave geral para ativar a energia da cabine
- Botão de L/D para ligar e desligar o equipamento
- Botão de acionamento do exaustor/ fluxo de ar
- Botão de luz UV
- Botão luz normal
- Botões de acionamento e regulagem do timer
- Display em cristal líquido

Operação:

Verificar se a tensão está em 220 Volts.

1. Antes da utilização, descontamine o interior da cabine com álcool etílico ou isopropílico a 70%.

2. Ligue a chave geral do aparelho, localizada na lateral do display.

3. Acione o botão L/D para ligar/desligar a cabine.

4. Ligue a luz UV 15 a 20 minutos antes do uso e o exaustor, após a descontaminação interna da cabine.

5. Lave as mãos e antebraços com água e sabão, secando com papel descartável, seguidos de descontaminação dos membros com álcool a 70%.

6. Limpe todos os objetos necessários antes de inseri-los na cabine.

7. Após a utilização, descontamine o interior da cabine com álcool etílico ou isopropílico a 70%.

8. Mantenha a cabine ligada de 10 a 15 minutos com a luz UV em funcionamento, desligue-a no botão D/L e desligue a chave geral após o procedimento.

- Evitar a circulação de pessoas no laboratório durante o uso da cabine.
- Usar equipamentos de proteção individual durante a manipulação de agentes de risco biológico (jaleco, luvas, máscara, touca etc).
- Minimizar os movimentos dentro da cabine.
- Evitar tirar as mãos de dentro da cabine quando estiver manipulando agentes contaminantes.
- Não utilizar chama muito alta na cabine para evitar interferências no fluxo de ar e no filtro do equipamento.
- Manter-se distante do foco de luz UV da cabine durante seu acionamento. Feixe de luz com potencial carcinogênico.

Figura 6. Imagem frontal da cabine de segurança biológica.

Fonte: Pachane. Disponível em: https://www.pachane.com.br. Acesso em: 27 set. 2024.

Registro

Não aplicável

7. Câmara de Germinação

Modelo: 347 CDG - Fanem

A Câmara de Germinação é um equipamento utilizado para a avaliação de germinação de sementes e outros propágulos com um controle preciso de temperatura em seu interior entre -5°C a 50°C, com luz alternada 12/12h.

Componentes do Equipamento:

- Chave Geral para acionamento da energia no equipamento
- Botões indicativos (setas) para configurações e regulagem de temperatura
- Botão para silenciamento de alarme (Sino)
- Tecla Menu
- Display

Operação:

Verificar se a tensão está em 220 Volts

1. Após ligar o equipamento, basta adicionar o material desejado no interior da câmara de germinação.

 Para a regulagem da temperatura, aperte o botão menu até a função Lock aparecer no display, seguido do acionamento do botão com seta para baixo para desbloquear o equipamento.

3. Aperte o botão menu até a função Ajst aparecer no display e em seguida, regula a temperatura com os botões indicativos de setas até o necessário.

4. Os limites de temperatura do equipamento estão regulados entre 23 a 28°C para desarmar o alarme sonoro. Em caso de necessidade de alteração, proceder conforme a instrução original de fábrica fixada na porta da câmara de germinação.

Recomendações:

 Não abrir o equipamento sem necessidade para melhor controle dos parâmetros avaliados. Figura 7: Imagem frontal da câmara de germinação

Fonte: Fanem. Disponível em: https://www.fanem.com.br. Acesso em: 27 set. 2024.

Registro

Registrar a data inicial e final de utilização do equipamento, conforme determinação do Técnico Responsável.

8. Bancada de Fluxo Laminar Horizontal

Modelo: Bancada de Fluxo Laminar Horizontal - Pachane

A Bancada de Fluxo Laminar Horizontal é um equipamento utilizado em laboratórios que requerem níveis de contenção de risco biológico e proteção adequada em materiais manipulados.

Componentes do Equipamento:

- Chave geral para ativar a energia da cabine.
- Botão de L/D para ligar e desligar o equipamento.
- Botão de acionamento do exaustor/ fluxo de ar.
- Botão de luz UV.
- Botão luz normal.
- Botões de acionamento e regulagem do timer.

Operação:

Verificar se a tensão está em 220 Volts

1. Antes da utilização, descontamine o interior da bancada com álcool etílico ou isopropílico a 70%.

2. Ligue a chave geral do aparelho, localizada na lateral do display.

3. Acione o botão L/D para ligar a cabine.

4. Ligue a luz UV 15 a 20 minutos antes do uso e o exaustor, após a descontaminação interna da bancada.

5. Lave as mãos e antebraços com água e sabão, secando com papel descartável, seguidos de descontaminação dos membros com álcool 70%.

6. Limpe todos os objetos necessários antes de inseri-los na cabine.

7. Após a utilização, descontamine o interior da cabine com álcool etílico ou isopropílico a 70%.

8. Mantenha a cabine ligada de 10 a 15 minutos com a luz UV em funcionamento, desligue-a no botão L/D e desligue a chave geral após o procedimento.

- Evitar a circulação de pessoas no laboratório durante o uso da cabine.
- Usar equipamentos de proteção individual durante a manipulação de agentes de risco biológico (jaleco, luvas, máscara, touca etc).
- Minimizar os movimentos dentro da cabine.
- Evitar tirar as mãos de dentro da cabine quando estiver manipulando agentes contaminantes.
- Não utilizar chama muito alta na cabine para evitar interferências no fluxo de ar e no filtro do equipamento.
- Manter distante do foco de luz UV da cabine durante seu acionamento. Feixe de luz com potencial carcinogênico.

Figura 8. Imagem frontal da bancada de fluxo laminar horizontal.

Fonte: Pachane

Registro

Não aplicável

9. Câmara incubadora B.O.D. com fotoperíodo e alternância de temperatura

Modelo: 26-BL - Excelsa II

A câmara incubadora com fotoperíodo e alternância de temperatura é um equipamento utilizado para simular condições ambientais controladas e otimizar a germinação de sementes e outros propágulos.

Componentes do Equipamento:

- Chave liga/desliga.
- Botões indicativos (setas) para configurações e regulagem de temperatura.
- Botão para configuração de tempo (timer).
- Tecla Menu.
- Display.
- Controlador de temperatura.
- Luz indicadora de aquecimento, refrigeração, alarme e iluminação.
- Fotoperíodo através de 4 lâmpadas fluorescentes.

Operação:

Verificar se a tensão está em 220 Volts

- 1. Após ligar o equipamento na tomada, acione a chave geral I/O.
- 2. O display acenderá e mostrará os parâmetros de configuração padrão.

3. Pressione a tecla Menu até que a opção de ajuste de temperatura seja exibida no display.

4. Use as setas (<>>) para selecionar o dígito que deseja ajustar, e as setas para cima/
baixo (▲ ▼) para alterar o valor da temperatura desejada.

5. Pressione a tecla Menu novamente até acessar a função de ajuste do fotoperíodo.

6. Configure o ciclo de luz (normalmente 12 horas de luz e 12 horas de escuridão) utilizando as setas de ajuste.

7. A função de temporização permite determinar quanto tempo o material ficará sob as condições ajustadas.

8. Pressione o botão de timer e configure o tempo desejado para incubação.

9. Após ajustar todos os parâmetros (temperatura, fotoperíodo e tempo), o equipamento iniciará automaticamente o ciclo de incubação.

10. Ao término do ciclo programado, desligue a câmara através da chave geral e retire o material incubado.

- Após cada uso, limpe o interior da câmara com um pano úmido e detergente neutro. Evite o uso de produtos químicos que possam corroer as superfícies.
- Não exceda a capacidade de material da câmara para garantir uma distribuição uniforme de temperatura e iluminação.

Figura 9: Imagem frontal da mesa agitadora.

Fonte: SP Labor. Disponível em: https://www.splabor.com.br/. Acesso em: 27 de set. 2024.

Registro

Registrar a data inicial e final de utilização do equipamento, conforme determinação do Técnico Responsável.

10. Centrífuga

Modelo: BIOCC- BI - Biocell

A centrífuga é um equipamento utilizado para, através da força centrífuga, separar as diversas fases de diferentes densidades em substâncias líquidas.

Componentes do Equipamento:

- Chave geral (traseira).
- Tampa com sistema de travamento.
- Painel de controle teclado/display.
- Botão P de programação.
- Teclas de ajustes de parâmetros (setas).
- Trava mecânica.
- Botão I/O para iniciar e interromper a centrifugação.

Operação:

Verificar se a tensão está em 220 Volts

1. Após ligar o equipamento na tomada, acione a chave geral localizada na traseira da centrífuga.

2. Escolha a programação de acordo com a metodologia utilizada, através das teclas dispostas no display do equipamento.

3. Para a programação, pressione a tecla P ciclicamente até a localização das telas auxiliares. Nas respectivas telas, ajuste os parâmetros escolhidos com as teclas ▲ ▼.

 Os dados são armazenados permanentemente até que a configuração seja modificada manualmente.

5. Aperte o botão da trava da tampa para a abertura e posicione o material a ser processado de forma balanceada, fechando a tampa logo em seguida.

6. Após as configurações, aperte o botão I/O para o funcionamento da centrífuga pelo tempo programado.

7. Após a sinalização sonora de que a centrifugação cessou, destrave e abra a tampa, retirando todo o material processado.

8. Caso seja necessário interromper a centrifugação antes do tempo programado, aperte o botão I/O e aguarde a sinalização para a abertura do equipamento.

Após utilizar o aparelho, esvaziá-lo, limpá-lo e fechar a tampa, desligando a chave geral e desconectando da tomada.

- Verifique se a centrífuga está em uma bancada firme e bem nivelada.
- Balancear a carga adicionada na centrífuga para permitir um funcionamento seguro e não danificar o sistema do rotor.
- Não usar a centrífuga com a tampa aberta.
- Não sobrecarregue o rotor. A densidade máxima permitida dos líquidos é de 1,2g/ cm³.

Figura 10: Imagem frontal da centrífuga

Fonte: Merse. Disponível em: https://www.merse.com.br. Acesso em: 27 set. 2024.

Registro

Não aplicável.

11. Contador de Colônias para Placas Petri

Modelo: BIOCC- BI - Biocell

O contador de colônias é um equipamento que permite a visualização com maior precisão de colônias desenvolvidas em placas Petri, facilitando a contagem pelo manipulador do equipamento.

Componentes do Equipamento:

- Contador de colônias.
- Caneta de contagem.
- Display com botões de ajustes de parâmetros.
- Placa de visualização de Ø90mm ou Ø150mm.

Operação:

Verificar se a tensão está em 220 Volts

- 1. Conecte a tomada na rede elétrica.
- 2. Conecte a caneta de contagem no equipamento.
- 3. Posicione a placa Petri no campo de contagem.
- 4. Posicione a lupa conforme a necessidade do manipulador do equipamento.
- 5. Pressione a ponta da caneta na placa para a contagem automática pelo equipamen-
- to, confirmada por sinalização sonora.

6. Caso ocorra uma contagem indevida, pressione os botões de ajuste (setas) para subtrair ou adicionar à contagem.

7. Utilize a tecla de recarregar para zerar a contagem.

Recomendações:

Manter o equipamento limpo após o uso.

Figura 11. Imagem frontal do contador de colônias para placas petri

Fonte: Netlab. Disponível em: https://www.lojanetlab.com.br. Acesso em: 27 set. 2024.

Registro

Registrar a data inicial e final de utilização do equipamento, conforme determinação do Técnico Responsável.

12. Espectrofotômetro de Luz Visível

Modelo: Espectrofotômetro de Luz Visível - Kasvi

O espectrofotômetro é um equipamento laboratorial utilizado para a avaliação dos níveis de absorção dos diferentes comprimentos de onda de diferentes substâncias, obtendo a curva do espectro de absorção do elemento analisado, com ondas entre 320 a 1020 nm.

Componentes do Equipamento:

- Espectrofotômetro de luz visível
- Display com botões de ajuste do equipamento

Operação:

Verificar se a tensão está em 220 Volts

1. Conecte o equipamento à rede de energia elétrica.

2. Após ligar o equipamento, aguarde aproximadamente 30 minutos para a estabilização do mesmo.

3. Configure, conforme a metodologia escolhida, os níveis de Transmitância, Absorbância, Concentração e Calor utilizando o botão MODE.

4. Em caso de necessidade, o botão 0%T pode ser utilizado para regular o zero do equipamento no modo de Transmitância (necessário fechar o compartimento da amostra e utilizar a cubeta preta), assim como tecla descendente para regular os valores nos modos de Fator e Concentração.

5. Assim como o botão 0%T, a tecla 100%T, pode ser acionada para que a leitura seja realizada em 100%. No modo de Fator e Concentração, use a tecla ascendente para ajustar os valores.

6. Após as configurações do equipamento, a tecla Enter deve ser pressionada para que os modos de funcionamento escolhidos sejam devidamente selecionados.

7. Após a configuração dos valores necessários, pressione o botão SAVE para o armazenamento e leitura dos dados, auxiliando na transferência das informações para o computador.

8. Para utilização, coloque a substância avaliada na cubeta transparente, abra o compartimento do espectrofotômetro e coloque a cubeta no local indicado, fechando o local para a leitura.

9. Selecione o comprimento de onda desejado e aperte ENTER para leitura após colocar a cubeta preenchida com o material no interior do equipamento.

Para cancelar todos os dados salvos no equipamento, pressione o botão ESC por 3 segundos.

- O equipamento deve ser instalado em local longe do calor e umidade excessiva, assim como de campos magnéticos, elétricos e de ondas de alta frequência.
- Utilizá-lo em local com luz amena para não prejudicar a leitura e estabilização.
- Limpá-lo após o uso, sem a utilização de compostos químicos, apenas com pano umedecido na parte externa e lenço macio na parte interna para a preservação de seus componentes.
- Caso alguma substância caia no interior do equipamento, proceder com a limpeza, imediatamente, visando evitar qualquer corrosão ou outro dano.
- Realizar as leituras com a tampa do equipamento devidamente fechada.

Figura 12. Imagem frontal do espectrofotômetro de luz visível

Fonte: Netlab. Disponível em: https://www.lojanetlab.com.br. Acesso em: 27 set. 2024

Registro

Registrar a data inicial e final de utilização do equipamento, conforme determinação do Técnico Responsável.

13. Estufa de Secagem com Circulação de Ar

Modelo: Estufa 520 - Fanem

A estufa de secagem com circulação de ar é um equipamento capaz de possibilitar uma temperatura interna mais uniforme, variando entre 50°C a 250°C, para secagem de materiais diversos.

Componentes do Equipamento:

- Estufa
- Termostato acoplado
- Termômetro acoplado
- Botões de regulagem dos parâmetros

Operação:

Verificar se a tensão está em 220 Volts

1. Abra a estufa e distribua, uniformemente, o material a ser seco, sem impedir a circulação de ar no equipamento.

- 2. Conecte a tomada do equipamento na rede elétrica e ligue a chave geral.
- 3. Ajuste a temperatura no botão de ajuste, conforme as necessidades da metodologia utilizada.

4. Após a secagem, desligue a chave geral do equipamento e desconecte-o da rede elétrica.

Recomendações:

- Cuidado ao manipular o equipamento quando a temperatura estiver elevada.
- Não secar elementos que desprendem gases tóxicos e/ ou explosivos.
- Não exceder 40% da lotação máxima do equipamento para permitir a adequada circulação de ar.

Figura 13. Imagem frontal da estufa de secagem com circulação de ar.

Fonte: Fanem. Manual de equipamentos. 2024.

Registro

Registrar a data inicial e final de utilização do equipamento, conforme determinação do Técnico Responsável.

14. Mesa agitadora orbital

Modelo: SP-180/DT-4

A mesa agitadora orbital é um equipamento utilizado para agitar amostras líquidas contidas em Erlenmeyers e outros recipientes.

Componentes do Equipamento:

- Botão de liga/desliga.
- Painel de controle.
- Controlador de RPM.
- Controlador de timer.

Operação:

Verificar se a tensão está em 220 Volts

- 1. Após ligar o equipamento na tomada, acione a chave I/O.
- 2. Ajuste a velocidade de rotação pressionando e girando o botão "RPM".
- Ajuste o tempo desejado de agitação das amostras pressionando e girando o botão TIMER.

4. Para agitação, basta adicionar o recipiente com o material a ser homogeneizado por agitação.

5. Após a utilização, desligue o equipamento e desconecte-o da rede elétrica.

6. Não utilizar equipamento de bancadas como balanças e outros equipamentos que possam ser descalibrados ou danificados pela trepidação.

Recomendações:

- Manter o equipamento limpo após o uso.
- O plugue do cabo de alimentação deve ser conectado em uma tomada fixada permanente na parede ou bancada.

Figura 14: Imagem frontal da mesa agitadora

Fonte: SP Labor. Disponível em: https://www.splabor.com.br/. Acesso em: 27 de set. 2024.

Registro

Registrar a data inicial e final de utilização do equipamento, conforme determinação do Técnico Responsável.

15. Microscópio/Lupa estereoscópio binocular

Modelo: SQZ, Tecnival

Lupa é um equipamento óptico utilizado para a observação de amostras em baixa ampliação, permitindo analisar superfícies, estruturas e detalhes de objetos materiais biológicos.

Componentes do Equipamento:

• Lupa

Operação:

Verificar se a tensão está em 220 Volts.

1. Conecte a fonte de alimentação do microscópio na rede elétrica.

2. Coloque a objetiva na posição de baixa potência e ligue a lupa na chave geral de iluminação.

3. Coloque o material a ser observado sobre a fonte de luz, fixando com o auxílio das presilhas.

4. Focalize a objetiva na amostra analisada utilizando os botões de ajuste macro e micrométrico.

Recomendações:

- Evitar movimentos bruscos e impactos no transporte do equipamento.
- Não tocar nas lentes com os dedos.

Figura 15. Imagem de microscópio estereoscópio.

Fonte: Anatomic. Disponível em: https://www.anatomic.com.br. Acesso em: 27 set. 2024.

Registro

Não aplicável.

16. Microscópio

Modelo: Microscópio Biológico Binocular L-1000 Series - Bioval

O microscópio é um equipamento óptico utilizado para ampliar e observar estruturas microscópicas, como células, tecidos e microrganismos, proporcionando detalhes não visíveis a olho nu por meio de lentes e iluminação apropriadas.

Componentes do Equipamento:

- Microscópio
- Fonte de alimentação

Operação:

Verificar se a tensão está em 220 Volts.

1. Conecte a fonte de alimentação do microscópio na rede elétrica.

2. Coloque a objetiva na posição de baixa potência e ligue o microscópio na chave geral de iluminação.

3. Coloque a lâmina a ser observada na platina, centralizada com o condensador, fixando com o auxílio das presilhas.

4. Focalize a objetiva na amostra analisada utilizando os botões de ajuste macro e micrométrico.

5. Quando necessário, girar o revólver para trocar as objetivas, sempre da menor para a maior potência, regulando apenas no ajuste fino ou no ajuste micrométrico.

6. Se necessário, adicionar os filtros e regular o condensador e o diafragma.

Recomendações:

- Não abrir o equipamento.
- Evitar movimentos bruscos e impactos no transporte do equipamento.
- Não tocar nas lentes com os dedos.
- Não girar os botões de foco esquerdo e direito em sentidos contrários para não danificar o equipamento.
- Utilizar a objetiva de 100x apenas com o óleo de imersão.

Figura 16. Imagem de microscópio.

Fonte: Anatomic. Disponível em: https://www.anatomic.com.br. Acesso em: 27 set. 2024.

Registro

Não aplicável.

17. pHmetro de Bancada

Modelo: W3B - Bel Engineering

O pHmetro é um equipamento utilizado em laboratórios para a aferição do pH de solução, avaliando sua acidez e alcalinidade conforme a demanda.

Componentes do Equipamento:

- Medidor de pH.
- Braço do eletrodo.
- Probe de temperatura.
- Probe de pH.
- Cabo de alimentação de energia.
- Soluções de calibração (pH 4.01, 7.00, 10.01).
- Display com botões para a regulagem dos parâmetros.

Operação:

Verificar se a tensão está em 220 Volts.

1. Após a conexão da fonte de alimentação na rede elétrica, pressione a tecla ON.

2. Para calibrar, se necessário, pressione a tecla CAL. O display irá mostrar 7.00, indicando a solução que deverá ser utilizada.

3. Mergulhar a probe do pH na solução solicitada até que o eletrodo esteja imerso, de forma cuidadosa.

4. Pressionar a tecla ENTER para confirmar a calibração e aguardar o pH apresentado no display estabilizar.

5. Quando o valor piscar três vezes no display, a calibração do primeiro ponto de pH foi concluída.

6. Após a calibração do pH 7.00, mergulhar o eletrodo na solução 4.01 ou 10.01 e pressionar a tecla ENTER.

7. Após a sinalização da estabilização e calibração do pH, o display irá mostrar a precisão da calibração e entrará no modo de medição.

8. Após esse processo, basta imergir o eletrodo na solução a ser avaliada.

9. O equipamento compensa automaticamente a temperatura.

- Calibrar o equipamento sempre que for utilizado após ser retirado da fonte de energia previamente.
- Manipular a probe do pH com cuidado para evitar danos.
- Após retirar as soluções de calibração da geladeira, aguardar a estabilização da temperatura no ambiente (aproximadamente 25°C).

Figura 17. Imagem frontal de pHmetro de bancada

Fonte: Autoras, 2024.

Registro

Não aplicável.

18. Vórtex

Modelo: Vórtex Basic 2800 rpm - Kasvi

O vórtex é utilizado para homogeneizar soluções em laboratórios, contando com dois modos de operação, o contínuo e o touch.

Componentes do Equipamento:

• Chave I/O

Operação:

Verificar se a tensão está em 220 Volts.

1. Após ligar o equipamento na tomada, acione a chave I/O no modo de agitação de sua preferência.

2. O modo contínuo mantém a agitação contínua e o modo touch agita conforme a pressão sobre a superfície de borracha do equipamento.

3. Para agitação, basta adicionar o recipiente, geralmente tubos de ensaio, com o material a ser homogeneizado por agitação.

4. Após a utilização, desligue o equipamento e desconecte-o da rede elétrica.

5. Não utilizar equipamento de bancadas como balanças e outros equipamentos que possam ser descalibrados ou danificados pela trepidação.

Recomendações:

Manter o equipamento limpo após o uso.

Figura 18: Imagem frontal do vórtex

Fonte: Autoras, 2024.

Registro

Não aplicável.

