

Revista Agri-Environmental Sciences, Palmas-TO, v. 9, Ed. Especial, e023021, 2023

DOI: https://doi.org/10.36725/agries.v9i2.8670

https://revista.unitins.br/index.php/agri-environmental-sciences/index

Artigo Científico

ISSN 2525-4804

1

AVALIAÇÃO DA SOLUBILIDADE DE UM REMINERALIZADOR E SEUS EFEITOS SOBRE A FERTILIDADE DO SOLO

Fred Newton da Silva Souza¹, Claudoaldo Antonio Mendes de Aguiar Neto², Juliana Mariano Alves³

RESUMO:

O trabalho avalia a solubilidade de um remineralizador de solos a partir dos teores de K extraídos em H₂O, Mehlich⁻¹ e Ácido Cítrico 2%, e seus efeitos sobre os parâmetros de fertilidade de um Neossolo Quartzarênico. O remineralizador de solos avaliado é proveniente de uma empresa de mineração de pedras preciosas localizada no município de Pindorama, Estado do Tocantins, cuja composição apresenta 4,5% de K₂O, além de outros elementos de nutrição de plantas, e granulometria 100% < 0,8 mm. Na avaliação dos efeitos sobre a fertilidade do solo foram utilizadas doses crescentes de K correspondentes às recomendadas para as mais diversas culturas agrícolas (100 a 400 kg ha⁻¹ de K), enquanto que a avaliação da solubilidade considerou o remineralizador exclusivamente (100%) e sua mistura com o solo em diferentes proporções (0%, 50% e 75%). Os resultados mostram que a solução de ácido cítrico 2% é mais eficiente na extração de K, constituindo um método rápido para determinação dos teores de K prontamente disponível para plantas cultivadas. O remineralizador apresentou efeito significativo sobre vários parâmetros físico-químicos do solo, inclusive sobre o teor de K, com importante significado para o manejo agrícola.

Palavras-chave: remineralizador de solos, solubilidade, potássio, fertilidade.

EVALUATION OF THE SOLUBILITY OF A REMINERALIZER AND ITS EFFECTS ON SOIL FERTILITY

ABSTRACT:

The work evaluates the solubility of a soil remineralizer based on the K contents extracted in H₂O, Mehlich⁻¹ and 2% Citric Acid, and its effects on the fertility parameters of a Quartzarenic Neosol. The evaluated soil remineralizer comes from a gemstone mining company located in the city of Pindorama, State of Tocantins, whose composition has 4.5% K₂O, in addition to other plant nutrition elements, and granulometry 100% < 0 .8 mm. In the evaluation of the effects on soil fertility, increasing doses of K corresponding to those recommended for the most diverse agricultural crops were used (100 to 400 kg ha⁻¹ of K), while the solubility evaluation considered the remineralizer exclusively (100%) and its mixture with the soil in different proportions (0%, 50% and 75%). The results show that the 2% citric acid solution is more efficient in K extraction, being a fast method to determine K contents for cultivated plants. The remineralizer had a significant effect on several physicochemical parameters of the soil, including the K content, with important significance for agricultural management.

Keywords: soil remineralizer, solubility, potassium, fertility.

¹Professor, Universidade Estadual do Tocantins, Núcleo de Desenvolvimento e Avaliação de Desempenho Ambiental -UNITINS/NUDAN; Palmas, Tocantins; fred.ns@unitins.br; https://orcid.org/0000-0001-6961-9299. ² Engenheiro Agrônomo, egresso da Universidade Estadual do Tocantins – UNITINS; ex-bolsista PIBIC-CNPq; claudoaldo21@hotmail.com; https://orcid.org/0000-0002-0316-5949. 3 Professora, Universidade Estadual do Tocantins, Núcleo de Desenvolvimento e Avaliação de Desempenho Ambiental – UNITINS/NUDAN; Palmas, Tocantins; juliana.ma@unitins.br. https://orcid.org/0000-0002-7322-342X.

INTRODUÇÃO

Muitos agricultores têm adotado como estratégia o uso dos bioinsumos e da remineralização de solos em substituição, pelo menos parcial, das fontes convencionais de nutrientes (FCN). O remineralizador de solos é um produto de origem mineral que tenha sofrido apenas redução e classificação de tamanho de partícula por processos mecânicos e que, aplicado ao solo, altere os seus índices de fertilidade, por meio de adição de macronutrientes e micronutrientes para as plantas, e promova a melhoria de propriedades físicas, físico-químicas ou da atividade biológica do solo (Lei 12.890/2013).

Os remineralizadores são geralmente obtidos a partir de rochas silicáticas, tais como basaltos, micaxistos, sienito. calcoxistos. carbonátitos. kamafugitos, serpentinitos, fonolitos. siltito glauconítico, dioritos, dacitos e outras. Atualmente, são 56 produtos remineralizador de solos registrados no Ministério da Agricultura, o que representa um aumento de 65% no número de produtos registrados em relação a 2022. Essas rochas quando finamente moídas e aplicadas diretamente ao solo apresentam grande potencial de uso na agricultura (Martins e Theodoro, 2010), seja como fonte de nutrientes ou condicionador do solo (Straaten, 2006).

Os resultados das pesquisas indicam que a eficiência agronômica do processo de remineralização de solos depende da origem da rocha, da sua mineralogia e composição química, bem como de outros fatores associados às características do solo, do tempo de incubação no solo, do tratamento prévio aplicado e das espécies cultivadas (Távora, 1982; Nascimento & Loureiro, 2004), somados às técnicas de manejo associadas.

Diante do ceticismo em torno da eficiência desses produtos para fins de produção agrícola (Rai e Kittrick, 1989), em grande parte decorrente de uma visão limitada dos processos de intemperização das rochas e minerais, cabe destacar que os pressupostos da racionalidade do uso agrícola dos remineralizadores de solos estão bem definidos na literatura, a saber: o tratamento prévio das rochas possibilita ampliar a extensão de superfície ativa, o que favorece a dissolução mineral e liberação de

nutrientes (Casey e Bunker, 1990); o suprimento de determinados nutrientes às plantas não se restringe a íons em solução ou na forma trocável (Castilhos e Meurer, 2002); a presença de ácidos orgânicos na rizosfera favorece a dissolução dos minerais e a liberação dos nutrientes para as plantas (Harley e Gilkes, 2000).

Do ponto de vista do manejo agrícola, a análise da disponibilidade de potássio-K das rochas silicáticas constitui um entrave à definição das doses adequadas de recomendação para diferentes tipos de solos e culturas agrícolas. Em função da natureza da rocha, o K pode ser mais ou menos liberado, dependendo do tipo de extrator utilizado (Eichler, 1983). Como bem apontam Martins et al. (2008), a definição de métodos mais adequados para estimar a disponibilidade de K de fontes alternativas de nutrientes, especialmente de rochas silicáticas, possibilita um melhor manejo da adubação, com reflexos nos custos de produção.

Em vários trabalhos (Rosolem et al., 1993; Melo et al., 1995; Castilhos e Meurer, 2002) tem sido apontado que, apesar do baixo teor de K no solo determinado pelos extratores de rotina, as plantas apresentam desenvolvimento satisfatórios, sem sintomas de deficiência. Este fato está relacionado à capacidade das plantas em alterar o pH pela exsudação de ácidos orgânicos na rizosfera, como ácidos oxálico, cítrico, acético, butírico e propiônico (Pires et al., 2007), aumentando a dissolução dos minerais (Silva et al., 2001).

O objetivo do presente estudo foi avaliar a solubilidade de um remineralizador de solos a partir dos teores de K extraídos com diferentes extratores, e seus efeitos sobre os parâmetros de fertilidade de um Neossolo Quartzarênico.

MATERIAL E MÉTODOS

O material coletado nas pilhas de rejeitos foi homogeneizado e peneirado de forma a constituir uma amostra com granulometria 100% < 0,3 mm, a qual foi encaminhada para análise da composição geoquímica no ACME Laboratórios. Na Tabela 1 são resumidos os resultados da análise geoquímica com os teores dos elementos.

Tabela 1. Teores dos elementos maiores totais no remineralizador (% em massa).

Amostra	SiO_2	Al_2O_3	Fe_2O_3	MgO	CaO	Na_2O	K_2O	P_2O_5	MnO	PF^1	\mathbb{C}^2	S^3	Soma ⁴
REM	39,6	20,0	17,6	12,3	0,4	0,4	4,4	0,2	0,2	4,1	0,1	<0,02	99,3

 $^{^{1}}$ PF – perda ao fogo, relativo ao teor total de voláteis (CO₂ + SO₃ + H₂O); 2 C – carbono total medido pelo Leco; 3 S – enxofre total medido pelo Leco; 4 Soma relativa aos óxidos e à PF.

De acordo com a Instrução Normativa MAPA 05/2016, o material avaliado preenche os requisitos básicos para enquadramento como um produto remineralizador de solos (teor de $K_2O > 1\%$ e da Soma de Bases > 9%).

O solo utilizado no experimento é caracterizado como Neossolo Quartzarênico, onde

apenas 6% das partículas apresentam granulometria na fração de tamanho argila. Na Tabela 2 são descritos os atributos físico-químicos do solo, com destaque para a elevada acidez (pH 4,7), e baixa disponibilidade natural de potássio (12 mg dm⁻³).

Tabela 2. Atributos físico-químicos originais do Neossolo Quartzarênico,

pН	P	K	Al	Ca+Mg	Ca ⁺⁺	H+Al	MO
CaCl ₂	mg	dm ⁻³		cmolc	dm ⁻³		%
4.7	4.0	12.0	1.1	0.5	0.4	3.3	2.0

A composição mineralógica do solo foi aferida a partir da análise de difratometria de raios-X, no Laboratório de Raio-X, do Instituto de Geociências da Universidade de Brasília – IGD/UnB, e revelou a presença de caulinita, gibbsita e quartzo (Souza, 2014).

O solo coletado na profundidade 0-20 cm foi peneirado e dividido em subamostras, nas quais foram aplicados os tratamentos, e depois colocados em vasos de 5 dm⁻³. O delineamento adotado foi de blocos casualizados, com 8 tratamentos e 3 repetições. Na Tabela 3 são descritos os tratamentos os quais são constituídos pelo solo e pela aplicação de diferentes doses e proporções de misturas do remineralizador ao solo.

Tabela 3. Tratamentos que compõem o experimento de solubilização do remineralizador.

Tratamentos	Dose de K ₂ O (kg ha ⁻¹)	Proporção Remineralizador:Solo
1. Solo	0	0:100
2. REM-D100	100	-
3. REM-D200	200	-
4. REM-D300	300	-
5. REM-D400	400	-
6. Remineralizador 100%	-	100:0
7. Remineralizador 75% + Solo 25%	-	75:25
8. Remineralizador 50% + Solo 50%	-	50:50

As doses foram definidas com base em referências agronômicas (kg ha⁻¹) e no teor total de K₂O no remineralizador (T2, T3, T4, T5), enquanto as proporções foram definidas pela relação de massas (kg kg⁻¹) remineralizador: solo (T6, T7, T8).

Após a implantação do experimento os tratamentos ficaram incubados por 30 dias em casa de vegetação, e pelo monitoramento periódico do peso

dos vasos a cada três dias a umidade foi mantida em 70% da capacidade de campo.

Transcorrido o período de incubação dos tratamentos no solo, amostras foram retiradas e analisadas para avaliação dos efeitos das doses agronômicas do remineralizador sobre os parâmetros de fertilidade do solo; e dos teores disponíveis de K extraídos com água (H₂O), ácido cítrico 2% e Mehlich-1 (ácido clorídrico + ácido sulfúrico) nas

diferentes proporções remineralizador/solo. As análises foram realizadas no Laboratório de Análises Agronômica e Ambiental – FULLIN, cujos métodos empregados encontram-se descritos em Silva (2009).

Todos os resultados foram analisados estatisticamente, variância e testes de médias (Tukey a 5%), com o auxílio do Software SISVAR. Diante da significância dos efeitos para doses e proporções foram realizadas análises de regressão para os atributos físico-químicos do solo e teor extraído de K em resposta às doses e às proporções das misturas.

RESULTADOS E DISCUSSÃO

Os efeitos do uso do remineralizador sobre os parâmetros físico-químicos do solo são resumidos na Tabela 4, cuja análise de variância mostra significância dos efeitos sobre o pH e os teores de P, K e Ca, com reflexos nos teores de Al³+ e na saturação de bases V%.

Tabela 4. Resumo das análises de variância e teste de médias para os parâmetros avaliados.

	рН	P	K	Ca	Mg	CTC	Al	H+Al	V	MO
		m	g dm ⁻³			cmolc d	m ⁻³			%
	Quadrado Médio									
TRAT	0,295*	6,66*	1056,6*	0,05*	0,005	0,056	0,01*	0,21*	128,0	0,05
CV%	2,0	18,8	14,8	8,8	43,2	10,4	26,9	8,0	15,6	10,9
Teste de Médias										
1.Solo	4,9d	2,0c	20,6b	0,46c	0,10a	3,1a	0,5a	2,3b	21,7b	1,5a
2.REM-D100	5,0cd	3,0bc	54,6a	0,56bc	0,10a	3,6a	0,4ab	2,8a	24,8a	1,5a
3.REM-D200	5,3bc	4,3ab	57,3a	0,63ab	0,13a	3,6a	0,3bc	2,5ab	28,5a	1,7a
4.REM-D300	5,5ab	5,0ab	63,3a	0,76a	0,16a	3,5a	0,1c	2,2b	35,1a	1,4a
5.REM-D400	5,7a	5,6a	68,3a	0,76a	0,20a	3,6a	0,1c	2,3ab	36,9a	1,4a

Médias que segue a mesma letra na coluna não diferem entre si, pelo teste de Tukey, a 5% de probabilidade.

O aumento do pH de 4,9 para 5,7 revela o efeito do remineralizador na redução da acidez do solo e, por consequência, na redução dos teores de Al³⁺ trocável, com especial significado para o manejo agrícola dos solos de Cerrado.

Os efeitos sobre o teor de K disponível no solo mostra aumento de 20,6 para 54,6 mg dm⁻³ com a menor dose aplicada (100 kg ha⁻¹ de K ou 2,5 t ha⁻¹), o que corresponde a um incremento de 165%. Porém, mesmo não havendo resposta ao aumento das doses aplicadas (100 a 400 kg ha⁻¹), os teores de K no solo atingiram os valores de referência propostos por Raij et al. (2001) para recomendação de adubação, cujos níveis de K adequados situam-se entre 31,2 e 81,9 mg dm⁻³.

De acordo com Souza e Lobato (2004) o teor inicial de K no solo era baixo (< 25 mg dm⁻³), mas com a aplicação do remineralizador os teores tornaram-se altos (> 54,6 mg dm⁻³). Do mesmo modo, ainda que os efeitos sobre os teores de Ca disponível no solo tenham sido significativos, os baixos teores iniciais de Ca (0,5 cmol_c dm⁻³) continuaram ainda

muito baixos diante do que é considerado adequado (1,5 a 7,0 cmol_c dm⁻³).

Apesar do remineralizador não constituir uma fonte de fósforo, pois apresenta apenas 0,1% de P₂O₅ em sua composição, o aumento da dose aplicada do remineralizador apresentou efeito significativo sobre a disponibilidade de P no solo. Efeitos semelhantes foram obtidos por Carvalho (2012) na avaliação de um pó de gnaisse, com incremento médio de 33% na disponibilidade de P no solo, e correlação positiva com os teores de Si extraídos.

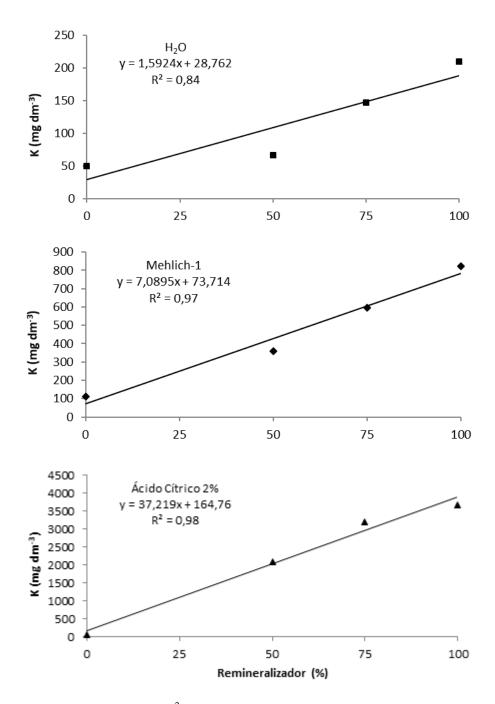
Conforme apontam alguns autores (Leite, 1997; Pozza et al., 2007) em solos altamente intemperizados os efeitos do Si sobre a disponibilidade de P está relacionada à sua menor adsorção, com o Si ocupando os sítios de ligação antes ocupados pelo P. Em condições de baixa disponibilidade de P no solo, a interação P x Si favorece a disponibilidade de P para as plantas (Tavakkoli et al., 2011).

Ainda que a capacidade de troca catiônica do solo (CTC) não tenha sido significativamente afetada

pelo aumento das doses aplicadas, em decorrência dos efeitos sobre o aumento dos teores de K e Ca, e da redução do Al trocável, nota-se uma alteração interessante na composição da CTC total do solo. Isso, pois a CTC inicial do solo (3,1 cmol_c dm⁻³), composta aproximadamente por 22% de bases trocáveis e 18% por Al trocável, com a aplicação do remineralizador tais componentes passaram a ocupar 37% e 4%, respectivamente. Em termos relativos, essa alteração na composição da CTC do solo representa 62% mais cátions trocáveis e 75% menos Al trocável.

Os resultados da extração de K pelas diferentes soluções extratoras são resumidos na Tabela 5. A solução de Mehlich-1 mostra-se mais eficiente na extração de K quando o tratamento envolve apenas solo, enquanto que a solução de ácido cítrico 2% mostrou-se mais eficiente na extração dos tratamentos com o remineralizador. Os teores extraídos pela solução de ácido cítrico 2% mostram que houve a recuperação de 11% do teor total de K contido no remineralizador (45 g kg⁻¹). Os extratores Mehlich-1 e Água promoveram a recuperação de apenas 2,1 e 0,4%, respectivamente.

Tabela 5. Teores médios de potássio (mg dm⁻³) extraídos do remineralizador.


Tratamentos	Soluções Extratoras						
Tratamentos	Mehlich-1	H_2O	Ácido Cítrico 2%				
T1. Solo	110	50	67				
T6. Remineralizador 100%	823	210	3667				
T7. Rem 75% + Solo 25%	597	147	3200				
T8. Rem 50% + Solo 50%	360	67	2100				
Recuperação de K (%)	2,1	0,4	11				

Os resultados apresentados e discutidos acima são ilustrados na Figura 1, na qual verifica-se que a maior correlação entre os teores de K extraídos (mg dm-³) e a proporção de remineralizador foi registrada com o extrator Ácido Cítrico. As equações de regressão resultantes apontam que os teores de K disponíveis para as plantas é diretamente proporcional à quantidade de remineralizador aplicada.

Apesar da grande diferença nos teores extraídos pelas diferentes soluções extratoras, nota-se uma elevada correlação entre esses e as doses de remineralizador aplicadas. Essa correlação também se mantém alta na comparação dos resultados par a par entre os extratores, teores e doses (R=0.95). Em termos de grandeza os teores extraídos com ácido cítrico 2% foram da ordem de 20 vezes maior do que os teores extraídos em H_2O e 5 vezes maior aos extraídos com Mehlich-1, que por sua vez foi da ordem de 5 vezes maior que os teores extraídos em H_2O .

Resultados semelhantes foram obtidos por Silva (2017), cuja solubilização do K contido na rocha mica-xisto que dá origem ao remineralizador de solos FMX produzido pela Pedreira Araguaia foi de 10,2%. Utilizando a solução extratora de ácido cítrico 2%, Lodi (2018) extraiu 10,1% do K contido em uma rocha feldspática. Ribeiro (2018) avaliou várias rochas silicáticas com diferentes teores de K, e constatou que o ácido cítrico 2% apresentou maior eficiência na extração de K, chegando a 16,7% do K contido na rocha.

Conforme se constatou no presente estudo, corroborado pelas semelhanças encontradas na literatura, existe grande correlação entre o potássio absorvido pelas plantas e o potássio extraído com ácido cítrico 2%. Isso corrobora às diretrizes do Ministério da Agricultura, Pecuária e Abastecimento que preconiza a utilização de extrator à base de ácido cítrico 2% como método padrão para determinação do potássio disponível (Brasil, 2014).

Figura 1. Teores totais de K (mg dm⁻³) extraídos do remineralizador de solos em diferentes soluções: H₂O; Mehlich-1; e Ácido Cítrico 2%.

CONCLUSÃO

O remineralizador apresenta efeito positivo sobre a redução da acidez do solo e dos teores de alumínio trocável, com especial significado para o manejo agrícola dos solos do Cerrado.

O remineralizador contribuiu para o aumento dos teores de K e Ca no solo, com efeitos sobre saturação de bases (V%) e a CTC do solo.

A solução de Ácido Cítrico 2% é mais eficiente na extração de K, e apresenta elevada correlação entre teores extraídos e proporção da mistura remineralizador: solo.

A solução de ácido cítrico 2% constitui um método rápido para determinação dos teores de K em remineralizadores obtidos de rochas silicáticas.

REFERENCIAS BIBLIOGRÁFICAS

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. (2014). **Manual de métodos analíticos oficiais para fertilizantes minerais, orgânicos, organominerais e corretivos**. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Coordenação-Geral de Apoio Laboratorial; Murilo Carlos Muniz Veras (Org.) – Brasília: MAPA/SDA/CGAL. 220 p.

Carvalho, A.M.X. (2012). Rochagem e suas interações no ambiente solo: contribuições para aplicação em agroecossistemas sob manejo agroecológico. **Tese** (**Doutorado em Solo**). Universidade Federal de Viçosa. Viçosa-MG. 116p.

Casey, W.H.; Bunker, B. (1990). **The leaching of mineral and glass surfaces during dissolution**, In: Hoclella JR. M.F.; White, A. (Eds.). Mineral-Water Interface Geochemistry, Washington: Mineralogical Society of American, Reviews in Mineralogy, v,13. p.397-426.

Castilhos, R.M.V.; Meurer, E.J. (2002). Suprimento de potássio de solos do Rio Grande do Sul para arroz irrigado por alagamento. **Revista Brasileira Ciência do Solo**, 26:977-982.

Eichler, V. (1983). **Disponibilidade do potássio do verdete de Abaeté calcinado com e sem calcário magnesiano, para a cultura do milho em solos de textura média e argilosa.** Dissertação (Mestrado em Ciências do Solo) - Escola Superior de Agricultura de Lavras, Lavras-MG. 147 p.

Harley, A.D.; Gilkes, R.J. (2000). Factors influencing the release of plant nutrient elements from silicate rock powders: a geochemical overview. **Nutrient Cycling in Agroecosystems**. Dordrecht, v, 56, n, 1. p.11-36.

Leite, P.C. (1987). **Interação silício-fósforo em Latossolo Roxo cultivado com sorgo em casa de vegetação.** Tese (Doutorado em Solos). Universidade Federal de Viçosa, Viçosa-MG. 87p.

Lodi, L.A. (2020). **Solubilização biológica de rocha potássica para aplicação como biofertilizante**. Dissertação (Mestrado em Engenharia Química). Universidade Federal de São Carlos. São Carlos-SP. 76 p.

Martins, E.S.; Oliveira, C.G.; Resende, A.V.; Matos, M.S.F. (2008). **Agrominerais – Rochas Silicáticas como Fontes Minerais Alternativas de Potássio para a Agricultura**, In: LUZ, A. B.; LINS, F. (Eds.). Rochas e Minerais Industriais – Usos e Especificações. Rio de Janeiro: CETEM. p.205-221.

Martins, E.S.; Theodoro, S.H. (2010). **Anais do I Congresso Brasileiro de Rochagem**. (eds.). Planaltina, DF: Embrapa Cerrados, 322 p.

Melo, V.F.; Barros, N.F.; Costa, L.M.; Novais, R.F. & Fontes, M.P.F. (1995). Formas de potássio e de magnésio em solos do Rio Grande do Sul, e sua relação com o conteúdo na planta e com a produção em plantios de eucalipto. **Revista Brasileira Ciência do Solo,** 19:165-171.

Nascimento, M.; Loureiro, F.E.L. (2004). Fertilizantes e sustentabilidade: o potássio na agricultura brasileira, fontes e rotas alternativas, Rio de Janeiro: CETEM/MCT. Série Estudos e Documentos, 61. 66p.

Pires, A. M. M.; Marchi, G.; Mattiazzo, M.E.; Guilherme, L.R.G. (2007). Ácidos orgânicos na rizosfera e fitodisponibilidade de elementos-traço originários de lodo de esgoto. **Pesquisa Agropecuária Brasileira**, Brasília-DF. v, 42, n, 7. jul. p.917-924.

Pozza, A.A.A.; Curi, N.; Costa, E.T.S.; Guilherme, L.R.G.; Marques, J.J.G.S.M.; Motta, P.E.F. (2007). Retenção e dessorção competitivas de ânions inorgânicos em gibbsita natural de solo. **Pesquisa agropecuária brasileira.** Brasília, v.42, n.11, nov. p.1627-1633. DOI: https://doi.org/10.1590/S0100-204X2007001100015

Rai, D.; Kittrick, J.A. (1989). **Mineral equilibria** and the soil system. In: Dixon, J.B. & Weed, S. B. (Eds.). Minerals in soil environments, Madison, Soil Science Society America. p.161-198.

Raij, B.; Andrade, J.C.; Cantarella, H.; Quaggio, J.A. (2001). **Análise química para avaliação da fertilidade de solos tropicais.** Campinas: Instituto Agronômico. 285p.

Ribeiro, G.M. (2018). Caracterização de pós de rochas silicáticas, avaliação da solubilidade em ácidos orgânicos e potencial de liberação de

nutrientes como remineralizadores de solos agrícolas. Tese (Doutorado em Solos). Universidade do Estado de Santa Catarina. Lages-SC. 106 p.

Rosolem, C.A.; Calonego, J.C.; Foloni, J.S.S. (2005). Potassium leaching from millet straw as affected by rainfall and potassium rates. **Communications in Soil Science and Plant Analysis**. New York, v, 36. p.1063-1074.

SILVA, C. C. A. (2017). **Avaliação da liberação de potássio de rochas silicáticas por extrações seletivas**. Dissertação (Mestrado em Geociências). Universidade de Brasília, Brasília-DF. 104p.

Silva, F. A. M.; Nogueira, F.D.; Ribeiro, L.L.; Godinho, A.; Guimarães, P.T.G. (2001). Exsudação de ácidos orgânicos em rizosfera de plantas daninhas. **Planta Daninha**, Viçosa-MG. v, 19, n, 2. p.193-196.

Silva, F. C. (2009). **Manual de análise química de solos, plantas e fertilizantes**. 2.ed, Brasília: EMBRAPA. 627 p.

Souza, D.M.G. & LOBATO, E. (2001). **Cerrado: Correção do Solo e Adubação.** EMBRAPA Cerrados, Planaltina-DF. 416p.

Souza, F. N. S. (2014). **Potencial de agrominerais silicáticos como fonte de nutrientes para a agricultura brasileira.** Tese (Doutorado em Geologia) — Universidade de Brasília, Brasília-DF. 106p.

Tavakkoli, E.; English, P.; Guppy, C.N. (2011). Interaction of silicone and phosphorus mitigate manganese toxicity in rice in a highly weathered soil. Communications in Soil Science and Plant Analysis, 42:503-513.

Távora, J. E. M. (1092). **Reservas minerais de potássio e suas explorações.** In: Yamada, T.; Igue, K.; Muzilli, O.; Usherwood, N.R. (Eds.). Potássio na agricultura brasileira: Anais,,, Piracicaba: Instituto da Potassa & Fosfato: Instituto Internacional da Potassa. p.37-50.

Van Straaten, P. (2006). Farming with rocks and minerals: challenges and opportunities. **Anais da Academia Brasileira de Ciência**. 78(4). p.731-747.